Локализация и функции пищевого центра.
Пищевой центр — сложное образование, компоненты которого локализуются в продолговатом мозге, гипоталамусе и в коре большого мозга и функционально объединены между собой. В продолговатом мозге располагается бульбарное звено пищевого центра — ядра V, VII, IX и X пар черепных нервов. Большая роль в регуляции всех этапов процесса пищеварения принадлежит ядрамгипоталамуса. Вентро-медиальные ядра гипоталамуса получили название «центранасыщения», латеральные — «центра питания». В регуляции процессов питания и пищеварения существенная роль принадлежит коре большого мозга, особенно тем ее отделам, которые являются мозговыми концами вкусового и обонятельного анализаторов. Деятельность пищевого центра многообразна. За счет его активности формируется пищедобывательное поведение (пищевая мотивация), при этом происходит сокращение скелетной мускулатуры (пищу надо найти, обработать, приготовить). Пищевой центр регулирует моторную, секреторную и всасывательную функции желудочно-кишечного тракта, обеспечивает возникновение сложных субъективных ощущений, таких как голод, аппетит, чувство сытости и жажды. Голод — совокупность субъективных ощущений, обусловленных объективной пищевой потребностью. В основе возникновения чувства голода лежит безусловный рефлекс. Однако кора большого мозга обостряет это чувство, делает его пр Обмен веществ и энергии, или метаболизм,— совокупность химических и физических превращений веществ и энергии, происходящих в живом организме и обеспечивающих его жизнедеятельность. Обмен веществ и энергии составляет единое целое и подчиняется закону сохранения материи и энергии. Обмен веществ складывается из процессов ассимиляции и диссимиляции. Ассимиляция (анаболизм) — процесс усвоения организмом веществ, при котором расходуется энергия. Диссимиляция (катаболизм) — процесс распада сложных органических соединений, протекающий с высвобождением энергии.
Единственным источником энергии для организма человека является окисление органических веществ, поступающих с пищей. При расщеплении пищевых продуктов до конечных элементов — углекислого газа и воды,— выделяется энергия, часть которой переходит в механическую работу, выполняемую мышцами, другая часть используется для синтеза более сложных соединений или накапливается в специальных макроэргических соединениях. Макроэргическими соединениями называют вещества, расщепление которых сопровождается выделением большого количества энергии. В организме человека роль макроэргических соединений выполняют аденозинтрифосфорная кислота (АТФ) и креатинфосфат (КФ). ОБМЕН БЕЛКОВ. Белками (протеинами) называют высокомолекулярные соединения, построенные из аминокислот. Функции: Структурная, или пластическая, функция состоит в том, что белки являются главной составной частью всех клеток и межклеточных структур. Каталитическая, или ферментная, функция белков заключается в их способности ускорять биохимические реакции в организме. Защитная функция белков проявляется в образовании иммунных тел (антител) при поступлении в организм чужеродного белка (например, бактерий). Кроме того, белки связывают токсины и яды, попадающие в организм, и обеспечивают свертывание крови и остановку кровотечения при ранениях. Транспортная функция заключается в переносе многих веществ. Важнейшей функцией белков является передача наследственных свойств, в которой ведущую роль играют нуклеопротеиды. Различают два основных типа нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).
Регуляторная функция белков направлена на поддержание биологических констант в организме. Энергетическая роль белков состоит в обеспечении энергией всех жизненных процессов в организме животных и человека. При окислении 1 г белка в среднем освобождается энергия, равная 16,7 кДж (4,0 ккал). Потребность в белках. В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки расщепляются ферментами до аминокислот и в тонком кишечнике происходит их всасывание. Из аминокислот и простейших пептидов клетки синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, т. е. использоваться для синтеза этих соединений. Биологическая ценность белков. Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или жизненно-необходимыми. К ним относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин, а у детей еще аргинин и гистидин. Недостаток незаменимых кислот в пище приводит к нарушениям белкового обмена в организме. Заменимые аминокислоты в основном синтезируются в организме. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными. Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя. Азотистый баланс. Азотистым балансом называют разность между количеством азота, содержащегося в пище человека, и его уровнем в выделениях. Азотистое равновесие — состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека.
Положительный азотистый баланс — состояние, при котором количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной ткани, при заживлении массивных ран или выздоровлении после тяжелых заболеваний. Азотистый дефицит (отрицательный азотистый баланс) отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена. Распад белка и синтез мочевины. Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак. ОБМЕН ЖИРОВ. Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды,гликолипиды, сульфолипиды) и стероиды (холестерин и др.). Основная масса липидов представлена в организме человека нейтральными жирами. Нейтральные жиры пищи человека являются важным источником энергии. При окислении 1 г жира выделяется 37,7 кДж (9,0 ккал) энергии. Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г, детей 3—10 лет — 26—30 г. Нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Однако есть ненасыщенные жирные кислоты — линолевая, линоленовая и арахидоновая, которые должны обязательно содержаться в пищевом рационе человека, их называют не заменимыми жирными кислотами. Нейтральные жиры, входящие в состав пищи и тканей человека, представлены главным образом триглицеридами, содержащими жирные кислоты — пальмитиновую, стеариновую, олеиновую, линолевую и линоленовую. В обмене жиров важная роль принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон). Кетоновые тела используются как источник энергии.
Фосфо- и гликолипиды входят в состав всех клеток, но главным образом в состав нервных клеток. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови. Холестерин и другие стероиды могут поступать с пищей или синтезироваться в организме. Основным местом синтеза холестерина является печень. В жировой ткани нейтральный жир депонируется виде триглицеридов. Образование жиров из углеводов. Избыточное употребление углеводов с пищей приводит к отложению жира в организме. В норме у человека 25—30% углеводов пищи превращается в жиры. Образование жиров из белков. Белки являются пластическим материалом. Только при чрезвычайных обстоятельствах белки используются для энергетических целей. Превращение белка в жирные кислоты происходит, вероятнее всего, через образование углеводов. ОБМЕН УГЛЕВОДОВ. Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Энергетическая ценность 1 г углеводов составляет 16,7 кДж (4,0 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, выполняют пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 0,5 кг. Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген — резервный углевод организма. Единственной формой углеводов, которая может всасываться, являются моносахара. Они всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза. Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом. В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот), что обозначается как гликонеогенез. Гликогенез, гликогенолиз и гликонеогенез — тесно взаимосвязанные и протекающие в печени процессы, обеспечивающие оптимальный уровень сахара крови. В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ре-синтез гликогена.
Головной мозг содержит небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга. Образование углеводов из белков и жиров (гликонеогенез). В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. ВОДНО-СОЛЕВОЙ ОБМЕН. Все химические и физико-химические процессы, протекающие в организме, осуществляются в водной среде. Вода выполняет в организме следующие важнейшие функции: 1) служит растворителем продуктов питания и обмена; 2) переносит растворенные в ней вещества; 3) ослабляет трение между соприкасающимися поверхностями в теле человека; 4) участвует в регуляции температуры тела за счет большой теплопроводности, большой теплоты испарения. Общее содержание воды в организме взрослого человека составляет 50—60% от его массы, то есть достигает 40—45 л. Принято делить воду на внутриклеточную, интрацеллюлярную (72%) и внеклеточную, экстрацеллюлярную (28%). Внеклеточная вода размещена внутри сосудистого русла (в составе крови, лимфы, цереброспинальной жидкости) и в межклеточном пространстве. Вода поступает в организм через пищеварительный тракт в виде жидкости или воды, содержащейся в плотных пищевых продуктах. Некоторая часть воды образуется в самом организме в процессе обмена веществ. При избытке в организме воды наблюдается общая гипергидратация (водное отравление), при недостатке воды нарушается метаболизм. Потеря 10% воды приводит к состоянию дегидратации (обезвоживание), при потере 20% воды наступает смерть. Вместе с водой в организм поступают и минеральные вещества (соли). Около 4% сухой массы пищи должны составлять минеральные соединения. Важной функцией электролитов является участие их в ферментативных реакциях. Натрий обеспечивает постоянство осмотического давления внеклеточной жидкости, участвует в создании биоэлектрического мембранного потенциала, в регуляции кислотно-основного состояния. Калий обеспечивает осмотическое давление внутриклеточной жидкости, стимулирует образование ацетилхолина. Недостаток ионов калия тормозит анаболические процессы в организме. Хлор является также важнейшим анионом внеклеточной жидкости, обеспечивая постоянство осмотического давления. Кальций и фосфор находятся в основном в костной ткани (свыше 90%). Содержание кальция в плазме и крови является одной из биологических констант, так как даже незначительные сдвиги в уровне этого иона могут приводить к тяжелейшим последствиям для организма. Снижение уровня кальция в крови вызывает непроизвольные сокращения мышц, судороги, и вследствие остановки дыхания наступает смерть. Повышение содержания кальция в крови сопровождается уменьшением возбудимости нервной и мышечной тканей, появлением парезов, параличей, образованием почечных камней. Кальций необходим для построения костей, поэтому он должен поступать в достаточном количестве в организм с пищей. Фосфор участвует в обмене многих веществ, так как входит в состав макроэргических соединений (например, АТФ). Большое значение имеет отложение фосфора в костях. Железо входит в состав гемоглобина, миоглобина, ответственных за тканевое дыхание, а также в состав ферментов, участвующих в окислительно-восстановительных реакциях. Недостаточное поступление в организм железа нарушает синтез гемоглобина. Уменьшение синтеза гемоглобина ведет к анемии (малокровию). Суточная потребность в железе взрослого человека составляет 10—30 мкг. Йод в организме содержится в небольшом количестве. Однако его значение велико. Это связано с тем, что йод входит в состав гормонов щитовидной железы, оказывающих выраженное влияние на все обменные процессы, рост и развитие организма.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|