Структура программы
Структура любой программной единицы (программы, процедуры или функции) должна быть такой:; <Объявление программной единицы> {Раздел описаний} BEGIN {Раздел исполняемых операторов} END <символ конца программной единицы> Здесь «Объявление программной единицы> - заголовок программы, процедуры или функции; заголовок программы можно опускать без каких-либо последствий для программы; для процедур и функций наличие заголовка обязательно; <символ конца программной единицы> - символ «.» для программы или символ «;» - для процедуры и функции. Любой из двух разделов программной единицы - раздел описаний или исполняемых операторов, или оба одновременно могут быть пустыми, т.е. не содержать никаких описаний или исполняемых операторов. В разделе описаний должны содержаться описания всех идентификаторов, используемых в разделе исполняемых операторов. Исключением являются идентификаторы, определенные в интерфейсных частях программных модулей (библиотек), а также глобальные для процедуры или функции идентификаторы (см. гл. 8). Если программная единица использует идентификатор из интерфейсной части, какого-либо модуля (см. гл. 9), в начале программы в предложении USES необходимо указать имя этого модуля. Последнее не относится к идентификаторам, определенным в стандартном модуле SYSTEM, т.е. имя этого модуля в предложении USES указывать не нужно. Более того, модуль SYSTEM считается предварительно объявленным, поэтому объявление Uses System; компилятор расценит как попытку двойного объявления модуля SYSTEM и даст соответствующее сообщение об ошибке. В разделе описаний объявляются идентификаторы типов, объектов, констант, переменных, а также метки, процедуры и функции. Описанию типов и объектов должно предшествовать зарезервированное слово TYPE, описанию констант - CONST, переменных - VAR и меток - LABEL, например:
type DigType = set of '0'.. '9'; StrType = string [40]; const N = 100; EPS = 1e-9; var x,y:real; st:StrType; label 1b1, 1b2; В отличие от стандартного Паскаля разделы TYPE, CONST, VAR, LABEL могут следовать друг за другом в любом порядке и встречаться в разделе описаний сколько угодно раз. Описание процедуры или функции заключается в указании заголовка этой процедуры (функции) и ее тела (подробнее см. в гл. 8). Структура программных библиотек (модулей) описана в гл.9. · Глава 4. ТИПЫ ДАННЫХ o 4.1. Простые типы § 4.1.1. Порядковые типы § 4.1.2. Вещественные типы o 4.2. Структурированные типы § 4.2.1. Массивы § 4.2.2. Записи § 4.2.3. Множества o 4.3. Строки o 4.4. Совместимость и преобразование типов Г л а в а 4 ТИПЫ ДАННЫХ Любые данные, т.е. константы, переменные, значения функций или выражения, в Турбо Паскале характеризуются своими типами. Тип определяет множество допустимых значений, которые может иметь тот или иной объект, а также множество допустимых операций, которые применимы к нему. Кроме того, тип определяет также и формат внутреннего представления данных в памяти ПК. Турбо Паскаль характеризуется разветвленной структурой типов данных (рис.4.1). Рис.4.1. Структура типов данных В Турбо Паскале предусмотрен механизм создания новых типов данных, благодаря чему общее количество типов, используемых в программе, может быть сколь угодно большим. В этой главе приводится подробное описание всех типов, за исключением файлов и указателей, которые рассматриваются в следующих двух главах, а также процедурных типов, которые рассматриваются в гл.8, и объектов (гл.10). ПРОСТЫЕ ТИПЫ К простым типам относятся порядковые и вещественные типы. Порядковые типы отличаются тем, что каждый из них имеет конечное число возможных значений. Эти значения можно определенным образом упорядочить (отсюда -название типов) и, следовательно, с каждым из них можно сопоставить некоторое целое число - порядковый номер значения.
Вещественные типы, строго говоря, тоже имеют конечное число значений, которое определяется форматом внутреннего представления вещественного числа. Однако количество возможных значений вещественных типов настолько велико, что сопоставить с каждым из них целое число (его номер) не представляется возможным. 4.1.1. Порядковые типы К порядковым типам относятся (см. рис.4.1) целые, логический, символьный, перечисляемый и тип-диапазон. К любому из них применима функция ORD(X), которая возвращает порядковый номер значения выражения X. Для целых типов функция ORD(X) возвращает само значение X, т.е. ORD(X) = X для X, принадлежащего любому шелому типу. Применение ORD(X) к логическому, символьному и перечисляемому типам дает положительное целое число в диапазоне от 0 до 1 (логический тип), от 0 до 155 (символьный), от 0 до 65535 (перечисляемый). Тип-диапазон сохраняет все свойства базового порядкового типа, поэтому результат применения к нему функции ORD(X) зависит от свойств этого типа. К порядковым типам можно также применять функции: PRED (X) - возвращает предыдущее значение порядкового типа (значение, которое соответствует порядковому номеру ORD(X)- 1), т.е. ORD(PRED(X)) = ORD(X) - 1; SUCC (X) - возвращает следующее значение порядкового типа, которое соответствует порядковому номеру ORD(X) +1, т.е. ORD(SUCC(X)) = ORD(X) + 1. Например, если в программе определена переменная var с: Char; begin с:= '5'; end. то функция PRED(C) вернет значение '4', а функция SUCC(C) - значение '6'. Если представить себе любой порядковый тип как упорядоченное множество значий, возрастающих слева направо и занимающих на числовой оси некоторый отрезок, то функция PRED(X) не определена для левого, a SUCC(X) - для правого конца этого отрезка. Целые типы. Диапазон возможных значений целых типов зависит от их внутреннего представления, которое может занимать один, два или четыре байта. В табл. 4.1 приводится название целых типов, длина их внутреннего представления в байтах и диапазон возможных значений. Таблица 4.1
При использовании процедур и функций с целочисленными параметрами следует руководствоваться «вложенностью» типов, т.е. везде, где может использоваться WORD, допускается использование BYTE (но не наоборот), в LONGINT «входит» INTEGER, который, в свою очередь, включает в себя SHORTINT.
Перечень процедур и функций, применимых к целочисленным типам, приведен в табл.4.2. Буквами b, s, w, i, l обозначены выражения соответственно типа BYTE, SHORTINT, WORD, INTEGER и LONGINT, x - выражение любого из этих типов; буквы vb, vs, vw, vi, vl, vx обозначают переменные соответствующих типов. В квадратных скобках указывается необязательный параметр. Таблица 4.2
При действиях с целыми числами тип результата будет соответствовать типу операндов, а если операнды относятся к различным целым типам, - типу того операнда, который имеет максимальную мощность (максимальный диапазон значений). Возможное переполнение результата никак не контролируется, что может привести к недоразумениям, например: var а: Integer; х, у: Real; begin а:= 32767; {Максимально возможное значение типа INTEGER} х:= а + 2; {Переполнение при вычислении этого выражения!} у:= LongInt(а)+2; {Переполнения нет после приведения переменной к более мощному типу} WriteLn(x:10:0, у:10:0) end. В результате прогона программы получим -32767 32769
Логический тип. Значениями логического типа может быть одна из предварительно объявленных констант FALSE (ложь) или TRUE (истина). Для них справедливы правила: ord(False) = 0; ord(True) = 1; False < True; succ(False)= True; pred(True) = False. Поскольку логический тип относится к порядковым типам, его можно использовать в операторе счетного типа, например: var 1: Boolean; begin for 1:= False to True do.... Символьный тип. Значением символьного типа является множество всех символов ПК. Каждому символу приписывается целое число в диапазоне 0...255. Это число служит кодом внутреннего представления символа, его возвращает функция ORD. Для кодировки используется код ASCII (American Standard Code for Information Interchange - американский стандартный код для обмена информацией). Это 7-битный код, т.е. с его помощью можно закодировать лишь 128 символов в диапазоне от 0 до 127. В то же время в 8-битном байте, отведенном для хранения символа в Турбо Паскале, можно закодировать в два раза больше символов в диапазоне от 0 до 255. Первая половина символов ПК с кодами 0...127 соответствует стандарту ASCII (табл. 4.3). Вторая половина символов с кодами 128...255 не ограничена жесткими рамками стандарта и может меняться на ПК разных типов (в прил.2 приведены некоторые распространенные варианты кодировки этих символов). Таблица 4.3
Символы с кодами 0...31 относятся к служебным кодам. Если эти коды используются в символьном тексте программы, они считаются пробелами. При использовании их в операциях ввода-вывода они могут иметь следующее самостоятельное значение:
К типу CHAR применимы операции отношения, а также встроенные функции: СНR(В) - функция типа CHAR; преобразует выражение В типа BYTE в символ и возвращает его своим значением;
UPCASE(CH) - функция типа CHAR; возвращает прописную букву, если СН -строчная латинская буква, в противном случае возвращает сам символ СН, например: var cl,c2: Char; begin cl:= UpCase('s'); c2:= UpCase ('Ф'); WriteLn(cl,' ',c2) end. Так как функция UPCASE не обрабатывает кириллицу, в результате прогона этой программы на экран будет выдано S ф Перечисляемый тип. Перечисляемый тип задается перечислением тех значений, которые он может получать. Каждое значение именуется некоторым идентификатором и располагается в списке, обрамленном круглыми скобками, например: typе colors =(red, white, blue); Применение перечисляемых типов делает программы нагляднее. Если, например, в программе используются данные, связанные с месяцами года, то такой фрагмент программы: type ТипМесяц=(янв,фев,мар,апр,май,июн,июл,авг,сен,окт,ноя,дек); var месяц: ТипМесяц; begin ....... if месяц = авг then WriteLn('Хорошо бы поехать к морю!'); ....... end. был бы, согласитесь, очень наглядным. Увы! В Турбо Паскале нельзя использовать кириллицу в идентификаторах, поэтому мы вынуждены писать так: type TypeMonth=(jan,feb,mar,may,jun,jul,aug,sep,oct,nov,dec); var month: TypeMonth; begin ....... if month = aug then WriteLn('Хорошо бы поехать к морю!'); ....... end. Соответствие между значениями перечисляемого типа и порядковыми номерами этих значений устанавливается порядком перечисления: первое значение в списке получает порядковый номер 0, второе - 1 и т.д. Максимальная мощность перечисляемого типа составляет 65536 значений, поэтому фактически перечисляемый тип задает некоторое подмножество целого типа WORD и может рассматриваться как компактное объявление сразу группы целочисленных констант со значениями О, 1 и т.д. Использование перечисляемых типов повышает надежность программ благодаря возможности контроля тех значений, которые получают соответствующие переменные. Пусть, например, заданы такие перечисляемые типы: type colors = (black, red, white); ordenal= (one, two, three); days = (monday, tuesday, Wednesday); С точки зрения мощности и внутреннего представления все три типа эквивалентны: ord(black)=0,..., ord(white)=2, ord(one)=0,...ord(three)=2, ord(monday)=0,...ord(Wednesday)=2. Однако, если определены переменные var col:colors; num:ordenal; day: days; то допустимы операторы col:= black; num:= succ(two); day:= pred(tuesday); но недопустимы col:= one; day:= black; Как уже упоминалось, между значениями перечисляемого типа и множеством целых чисел существует однозначное соответствие, задаваемое функцией ORD(X). В Турбо Паскале допускается и обратное преобразование: любое выражение типа WORD можно преобразовать в значение перечисляемого типа, если только значение целочисленного выражения не превышает мощное1™ перечисляемого типа. Такое преобразование достигается применением автоматически объявляемой функции с именем перечисляемого типа (см. п. 4.4). Например, для рассмотренного выше объявления типов эквивалентны следующие присваивания: col:= one; col:= colors(0); Разумеется, присваивание col:= 0; будет недопустимым. Переменные любого перечисляемого типа можно объявлять без предварительного описания этого типа, например: var col: (black, white, green); Тип-диапазон. Тип-диапазон есть подмножество своего базового типа, в качестве которого может выступать любой порядковый тип, кроме типа-диапазона. Тип-диапазон задается границами своих значений внутри базового типа: <мин.знач.>..<макс.знач.> Здесь <мин.знач. > - минимальное значение типа-диапазона; <макс.знач.> - максимальное его значение. Например: type digit = '0'..'9'; dig2= 48..57; Тип-диапазон необязательно описывать в разделе TYPE, а можно указывать непосредственно при объявлении переменной, например: var date: 1..31; month: 1..12; Ichr: 'A'..'Z';. При определении типа-диапазона нужно руководствоваться следующими правилами: · два символа «..» рассматриваются как один символ, поэтому между ними недопустимы пробелы; · левая граница диапазона не должна превышать его правую границу. Тип-диапазон наследует все свойства своего базового типа, но с ограничениями, связанными с его меньшей мощностью. В частности, если определена переменная type days = (mo,tu,we,th,fr,sa,su); WeekEnd = sa.. su; var w: WeekEnd; begin ..... w:= sa; ..... end; то ORD(W) вернет значение 5, в то время как PRED(W) приведет к ошибке. В стандартную библиотеку Турбо Паскаля включены две функции, поддерживающие работу с типами-диапазонами: НIGН(Х) - возвращает максимальное значение типа-диапазона, к которому принадлежит переменная X; LOW(X) -возвращает минимальное значение типа-диапазона. Следующая короткая программа выведет на экран строку -32768...32767 var k: Integer; begin WriteLn(Low(k),'..',High(k)) end. 4.1.2. Вещественные типы В отличие от порядковых типов, значения которых всегда сопоставляются с рядом целых чисел и, следовательно, представляются в ПК абсолютно точно, значения вещественных типов определяют произвольное число лишь с некоторой конечной точностью, зависящей от внутреннего формата вещественного числа. Таблица 4.4
Как видно из табл.7, вещественное число в Турбо Паскале занимает от 4 до 10 смежных байт и имеет следующую структуру в памяти ПК:
Здесь s - знаковый разряд числа; е - экспоненциальная часть; содержит двоичный порядок; m - мантисса числа. Мантисса m имеет длину от 23 (для SINGLE) до 63 (для EXTENDED) двоичных разрядов, что и обеспечивает точность 7...8 для SINGLE и 19...20 для EXTENDED десятичных цифр. Десятичная точка (запятая) подразумевается перед левым (старшим) разрядом мантиссы, но при действиях с числом ее положение сдвигается влево или вправо в соответствии с двоичным порядком числа, хранящимся в экспоненциальной части, поэтому действия над вещественными числами называют арифметикой с плавающей точкой (запятой). Как видим, Турбо Паскаль характеризуется богатой гаммой вещественных типов, однако доступ к типам SINGLE, DOUBLE и EXTENDED возможен только при особых режимах компиляции. Дело в том, что эти типы рассчитаны на аппаратную поддержку арифметики с плавающей точкой и для их эффективного использования в состав ПК должен входить арифметический сопроцессор. Компилятор Турбо Паскаля позволяет создавать программы, работающие на любых ПК (с сопроцессором или без него) и использующие любые вещественные типы. Необходимая для этого настройка компилятора описана в прил.1. В процессе запуска Турбо Паскаль проверяет состав аппаратных средств и выявляет наличие или отсутствие сопроцессора. В некоторых случаях бывает необходимо отключить автоконтроль. Для этого перед запуском Турбо Паскаля следует дать такую команду ДОС: set 87=N команда set 87=Y напротив, включает автоконтроль - эта команда активна по умолчанию. Отметим, что арифметический сопроцессор всегда обрабатывает числа в формате EXTENDED, а три других вещественных типа в этом случае получаются простым усечением результатов до нужных размеров и применяются в основном для экономии памяти. Например, если «машинное эпсилон» (см. пример 2.6 в гл.2) вычисляется с помощью такой программы: {$N+,E+} type RealType = Real: var epsilon: RealType; begin epsilon:= 1; while 1+epsilon/2 > 1 do epsilon:= epsilon/2; WriteLn(epsilon) end. то независимо от объявления типа REALTYPE (он может быть SINGLE, REAL, DOUBLE или EXTENDED) на печать будет выдан результат 1.08420217248550Е-0019 что соответствует типу EXTENDED. Происходит это по той причине, что все операнды вещественного выражения 1 + epsilon/2 в операторе WHILE, перед вычислением автоматически преобразуются к типу EXTENDED. Чтобы получить правильный результат (например, для типа REALTYPE = REAL он будет 9. 09494701772928Е-0013), программу необходимо изменить следующим образом: {$N+,E+} type RealType= Real; var epsilon, epsl:RealType; begin epsilon:= 1; repeat epsilon:= epsilon/2; epsl:= 1 + epsilon until epsl = 1; WriteLn(2*epsilon) end. Следует учесть, что тип REAL оптимизирован для работы без сопроцессора. Если Ваш ПК оснащен сопроцессором, использование типа REAL приведет к дополнительным затратам времени на преобразование REAL к EXTENDED. Поэтому никогда не используйте REAL на ПК с сопроцессором, т.к. дополнительные затраты времени на преобразование типов могут свести на нет все преимущества сопроцессора. При разработке программ, критичных ко времени счета, следует заменять его типами SINGLE или DOUBLE: по сравнению с типом REAL скорость вычислений на машинах с сопроцессором в этом случае увеличивается в 2...3 раза. Если в ПК нет арифметического сопроцессора, скорость обработки данных всех вещественных типов приблизительно одинакова. Особое положение в Турбо Паскале занимает тип СОМР, который трактуется как вещественное число без экспоненциальной и дробной частей. Фактически, СОМР - это «большое» целое число со знаком, сохраняющее 19...20 значащих десятичных цифр (во внутреннем представлении СОМР занимает 8 смежных байт). В то же время в выражениях СОМР полностью совместим с любыми другими вещественными типами: над ним определены все вещественные операции, он может использоваться как аргумент математических функций и т.д. Наиболее подходящей областью применения типа СОМР являются бухгалтерские расчеты: денежные суммы выражаются в копейках или центах и действия над ними сводятся к операциям с достаточно длинными целыми числами. Для работы с вещественными данными могут использоваться встроенные математические функции, представленные в табл. 2.5. В этой таблице REAL означает любой вещественный тип, INTEGER - любой целый тип. Таблица 4.5
Читайте также: D) научно-исследовательские разработки, инфраструктура. Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|