Оценка площади охлаждающей поверхности радиатора
Стр 1 из 3Следующая ⇒ Микросхема УМЗЧ обязательно должна быть установлена на радиаторе – ведь даже в состоянии покоя на ней рассеивается мощность, равная P0=UпI0=(2•25)•0,07=3,5 Вт. Чтобы рассчитать необходимую площадь радиатора, вычислим максимальную рассеиваемую мощность для случая работы в идеальном классе В: Обычно сумма тепловых сопротивлений корпус – радиатор и радиатор – окружающая среда оказываются меньше, чем 2,0 ºС/Вт. Тепловое сопротивление корпус – радиатор зависит от способа установки микросхемы. Если использовано непосредственное соединение металл – металл, тепловое сопротивление будет примерно 1,0 ºС/Вт при использовании теплопроводной пасты и 1,2 ºС/Вт при ее отсутствии. При наличии слюдяной прокладки между корпусом и радиатором тепловое сопротивление можно считать равным 1,6 ºС/Вт и 3,4 ºС/Вт соответственно при применении теплопроводной пасты и без нее. Рассмотрим для примера крепление микросхемы к радиатору через слюдяную прокладку с применением теплопроводной пасты. Тепловое сопротивление радиатора должно быть меньше чем 5,0 – 2,0 - 1,6 = 1,4 ºС/Вт. Это рекомендуемое тепловое сопротивление радиатора для данной конструкции. Полезно оценить результаты расчетов радиатора с помощью какой-нибудь программы, например, [4]. Самый прикидочный расчет площади охлаждающей поверхности радиатора: 20 квадратных сантиметров на каждый ватт рассеиваемой микросхемой мощности.
http://proacustic.ru/teplootvod.html
ОУ, выходная мощность которых превышает 1 Вт, обычно требуют установки теплоотвода (радиатора) для охлаждения кристалла. Напомню, что усилитель, работающий в режиме AB, имеет КПД около 50%. Это означает, что он выделяет столько же мощности в виде тепла, сколько отдает в нагрузку. Поэтому для охлаждения кристалла микросхемы (транзистора) необходимо использовать теплоотвод. Максимальная температура, при которой кристалл близок к разрушению, но еще сохраняет работоспособность, составляет 150 °С. При этом температура корпуса ниже в связи с тепловыми потерями при переходе от кристалла к корпусу и, как правило, не превышает 100 °С. Нормальная температура кристалла составляет 75 °С, а радиатора -50-60 °С. Такая температура соответствует болевому порогу кожи человека, поэтому есть очень простое правило: если вы не обжигаетесь, коснувшись радиатора рукой, его температура находится в норме (конечно, при условии хорошего контакта между радиатором и тепловыделяющим элементом). Стоит также отметить, что срок службы микросхемы напрямую зависит от ее температуры. Существует правило, гласящее, что при увеличении температуры кристалла на 10 °С срок его службы падает вдвое. Это значит, что при увеличении температуры кристалла с 60 до
Радиаторы, используемые для охлаждения радиоэлементов, классифицируются по строению на: • ребристые (рис. 2.17, а); • игольчатые (рис. 2.17, б). • с естественной вентиляцией; • с принудительной вентиляцией. Эти типы радиаторов отличаются плотностью расположения ребер или игл. Для радиаторов с естественной вентиляцией расстояние между ребрами (иглами) должно быть не менее 4 мм. К тому же такие радиаторы рассчитаны для работы только в вертикальном положении, когда воздух под действием естественных сил движется между ребрами. Если расстояние между ребрами (иглами) составляет около 2 мм, то такой радиатор рассчитан на принудительную вентиляцию и требует установки вентилятора. По применяемым материалам: • цельные алюминиевые; • цельные медные; • алюминиевые с медным основанием. Существуют методики точного расчета радиаторов, учитывающие рассеиваемую мощность, параметры окружающей среды, конфигурацию, материал радиатора и т.д. Однако эти методики нужны на этапе проектирования теплоотвода. Радиолюбители редко самостоятельно изготавливают радиаторы, чаще используя готовые, взятые из старой радиоаппаратуры. В конечном итоге нас интересует только один параметр — максимальная рассеиваемая мощность для этого радиатора. Чтобы определить его, достаточно знать всего две характеристики: тип Площадь ребристого радиатора вычисляется как сумма площадей всех его ребер и площади основания. Заметьте, что у одного ребра две излучающие поверхности. Это значит, что ребро размером 1×1 см имеет площадь 2 см2. Площадь игольчатого радиатора вычисляется как сумма площадей всех его игл и площади основания. Площадь одной иглы можно вычислить по формуле: S = π ( r 1 + r 2 ) l (r1 - радиус нижнего основания усеченного конуса; r2 - радиус верхнего основания усеченного конуса; l - образующая усеченного конуса (длина боковой стороны))
После этого допустимая рассеиваемая мощность может быть оценена по формуле: где Р — допустимая рассеваемая мощность, Вт; S — площадь радиатора, см2; к — коэффициент, учитывающий тип вентиляции. Для естественной вентиляции к = 33, для принудительной вентиляции к = 11. Тепловое сопротивление радиатора может быть оценено по формуле Rth=(51*k)/S, описанной здесь: http://forum.cxem.net/index.php?showtopic=32031 Размерность теплового сопротивления - градус/Ватт. То есть насколько температура кристалла будет выше температуры корпуса при выделении 1 Вт тепла. В последние годы в радиолюбительской практике все чаще применяются системы охлаждения для процессоров персональных компьютеров (cooler — кулеры). Кулеры современных процессоров рассчитаны на рассеивание мощности около 100 Вт даже при небольшой вентиляции. Для крепления микросхемы к основанию радиатора можно использовать шурупы с плоской шляпкой либо, при наличии метчика, нарезать резьбу в радиаторе и закрепить микросхему винтом. Между основанием радиатора и корпусом микросхемы обязательно должен быть слой термопасты для улучшения теплопроводности. Наилучшие показатели теплопроводности показывают пасты типа КПТ-81 или «Алсил-3». Их можно купить в любом компьютерном магазине или магазине радиодеталей. Теплопроводность термопаст составляет при-
http://forum.cxem.net/index.php?showtopic=32031 Что бы совсем разобратся нужно на конкретном примере. К примеру есть ИМС длина 2см ширина 1см толщина 0,5 см Мощность 535 мВт Температура воздуха 22 по цельсию. Как считать?
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|