Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Оценка качества среды на территории ВМЗ «Красный Октябрь»

Была выполнена оценка качества окружающей среды на территории металлургического завода «Красный Октябрь», который как мы отмечали выше, относится к Северному промузлу Волгоградской агломерации, как и РУСАЛ.

Метод оценки качества описанный выше был использован для оценки стабильности развития организмов по уровню асимметрии морфологических структур (листья тополя обыкновенного.) для территории ВМЗ «Красный Октябрь»

Время сбора материала (листьев) 19-24 октября 2006г, место сбора в двух точках на территории завода (ЭСПЦ-2,ЦОМП), и в 3 точках территории около завода (жилая зона, СЗЗ, гостиница “Турист”), там где проводился отбор пробы для исследования почв.

В результате обработки фактического материала, а именно, листьев тополя обыкновенного получены результаты и нанесены на карту данные по загрязнению территории завода ВМЗ «Красный Октябрь».

По пятибалльной шкале оценки отклонений состояния организма от условной нормы по величине интегрального показателя стабильности развития (приведенной в методике), было определено, что для всех 5 точек величина показателя стабильности развития превышает 0,054, значит V баллов для всей прилегающей территории завода (Северный промышленный узел).

Вывод о качестве среды территории завода: критическое состояние качества среды, причем критическое состояние наблюдается даже в жилой зоне.

Максимальное отклонение стабильности развития растений наблюдается около ЭСПЦ-2, проходной завода, и (ЦОМП) и цеха металлообработки, меньше отклонение возле гостиницы «Турист».

Причинами отклонений стабильности развития растений являются неблагоприятные факторы антропогенного происхождения: атмосферные выбросы завода (превышающие ПДК по ТМ и по выбросам в атмосферу), перенос загрязнений атмосферными потоками. Данные виды загрязнений постоянны для данной территории (от стационарного источника воздействия) и оказывают влияние в течение всего периода развития растений.

Причинами отклонений стабильности развития растений являются неблагоприятные факторы антропогенного происхождения: атмосферные выбросы завода (превышающие ПДК среды), перенос загрязнений атмосферными потоками. По состоянию растительной компоненты экосистем можно судить о критическом состоянии территории и высоком риске для здоровья населения, проживающего и находящегося долгое время на территории. Для уменьшения вреда здоровью населения и экосистемам необходимо проведение дополнительных мероприятий, направленных на снижение выбросов, уменьшение концентрации вредных веществ в выбросах, установка дополнительного очистного оборудования и другие природоохранные мероприятия.

Выводы. Установлено, что в большинстве промышленных районов города наблюдается снижение стабильности развития растений, связанное с действием антропогенного процесса: загрязнение от деятельности металлургической промышленности (северный промузел Волгоградской агломерации), химической и нефтеперерабатывающей (южный промузел) и от автомобильного транспорта (≈70%). Рекогносцировочная оценка здоровья ОПС свидетельствует о напряженной ситуации и предполагает проведение более детальной оценки и организации биомониторинга.

Выявлена динамика качества среды и ее прогноз методами биоиндикации урболандшафтов Волгоградской агломерации. Сделан прогноз объемов выбросов промышленных предприятий, степени загрязнения почв, состояния здоровья населения


Глава VI. Экологические последствия загрязнения окружающей природной среды (ОПС) для здоровья населения и вопросы риска

 

О влиянии химических веществ на организм накоплена обширная литература, но научная достоверность этих оценок на каждый момент времени в какой-то степени относительна и они нуждаются в систематической корректировке с учетом новейших достижений фундаментальных дисциплин, которые могли бы углублять и дополнять имеющуюся неполную и нередко разнородную информацию. Эпидемиологическими методами изучается воздействие на здоровье человека различных неблагоприятных факторов, присутствующих в разных средах: загрязнения атмосферного воздуха, питьевой воды, почвы, пищевых продуктов, шума, естественной радиации, электромагнитных полей Внимание исследователей сконцентрировано также на изучении различных фракций взвешенных веществ в воздухе, тяжелых металлов (в первую очередь, это свинец, ртуть и кадмий), летучих органических соединений (ЛОС) и стойких органических загрязнителей (СОЗ), к которым относят диоксины, полихлорбифенилы (ПХБ) и некоторые хлорсодержащие пестициды (ДЦТ, гексахлорциклогексан и другие). В сфере внимания эпидемиологов и гигиенистов находятся также такие проблемы, как изучение связей между факторами окружающей среды и злокачественными новообразованиями, нарушениями репродуктивного здоровья и эндокринного статуса, аллергическими реакциями, психоневрологическим статусом новорожденных и детей раннего возраста, заболеваниями органов дыхания и другими изменениями показателей здоровья.

Таким образом, эпидемиологические исследования позволяют выявить последствия загрязнения окружающей среды на состояние здоровья населения, выразить их в количественных величинах, установить причинно-следственные отношения между неблагоприятными факторами среды обитания человека и показателями здоровья, получить достоверную информацию о типах эффектов, развивающихся под влиянием различных загрязнителей. Вместе с тем, в связи со сложной, многофакторной природой хронических неинфекционных заболеваний доказать этиологическую связь между развившимся у человека заболеванием и предшествующим вредным воздействием очень трудно. Однако путем правильно спланированных эпидемиологических и гигиенических исследований нередко удается выявить и количественно оценить дополнительную вероятность, т.е. риск развития подобных заболеваний для относительно больших групп населения. При этом лишь с определенной долей вероятности можно предполагать наличие повышенного риска у конкретного индивидуума. Факторами риска называются внешние воздействия или особенности организма, приводящие к увеличению вероятности возникновения неблагоприятных эффектов.[70,71]

Оценка риска в последние годы во многих странах и международных организациях рассматривается как ведущий аналитический инструмент, используемый для характеристики воздействия неблагоприятных факторов окружающей среды на здоровье населения, а также для разработки оптимальных управленческих решений. Целесообразность внедрения методов оценки риска в практику здравоохранения и в разработку эффективной природоохранной политики диктуется рядом причин, среди которых особо следует выделить две основные: 1) необходимость использования при принятии управленческих решений аналитических данных (показателей), количественно отражающих потенциальный и реальный ущерб здоровью от загрязнения окружающей среды;

2) недостаточная обоснованность способов трансформации и интерпретации полученной информации для ее представления в доступном, понятном и, главное, в пригодном для быстрого принятия управленческих решений виде, в первую очередь, лицам, ответственным за проведение оздоровительных мероприятий, а также СМИ и заинтересованной общественности.

В работе [72] приведено описание особенностей воздействия на здоровье населения наиболее распространенных химических веществ (диоксиды серы и азота, взвешенные вещества, свинец, нитраты и нитриты и др.), тяжелых металлов, летучих органических соединений, стойких органических загрязнителей. Дана оценка результатов воздействия химических веществ на здоровье населения, в том числе на увеличение уровня смертности, онкологических заболеваний, репродуктивное здоровье и здоровье детей.

Приведены основные методы количественной оценки тех изменений здоровья населения, которые возникают при воздействии загрязненной окружающей среды. Это и методы экологической эпидемиологии и методы оценки риска.

Волгоград (1,0млн. жителей). Основными источниками загрязнения в окружающей среды в городе являются алюминиевый, стапеплавильный, химические и нефтеперерабатывающие заводы, предприятия машиностроения и строительной индустрии. Только с выбросами предприятия «Химпром" в атмосферный воздух поступает около 30 веществ I и II классов опасности, в т.ч. 5 веществ I класса - это хлористый бензол, хлорокись фосфора, трикрезилфосфат, фосфористый водород, метафос. Степень загрязнения атмосферного воздуха очень высока - превышены ПДКс бенз(а)пирена, взвешённых веществ, фтористого водорода, формальдегида, аммиака, фенола и диоксида азота. Наибольшее загрязнение атмосферного воздуха хлористым водородом, сероводородом, аммиаком, фенолом наблюдалось в южной части города, где расположены предприятия химического и нефтехимического комплекса (АО "Каустик", АО “Химпром”, АО "Пласткард", ДАО "Лукойл-Волгограднефтепереработка", АО "Техуглерод"), а также пруды-испарители (накопители) – Южный промузел Волгоградской агломерации. Фторид водорода, формальдегид тяжелые металлы - район расположения ВМЗ "Красный Октябрь", АО "Волгоградский тракторный завод им Ф.Э.Дзержинского", РУСАЛ, которые входят в Северный промузел Волгоградской агломерации.

Деятельность этих предприятий оказывает значительное влияние на состояние окружающей среды прилегающих территорий. Так, например, в Светлоярском районе вблизи Волгограда, в атмосферном воздухе регистрируются повышенные концентраций хлористого водорода, фенола, оксидов азота, а в подземных водах концентрации ртути достигают 20 ПДК [Митрохин, 2002].

На юге города сотрудниками Волгоградского Медуниверситета выполнена серия крупных эколого-эпидемиологических работ по оценке воздействия загрязнённого атмосферного воздуха на здоровье детей. Существенные изменения различных показателей здоровья наблюдаются начиная с постнатального периода. Новорожденные дети, родители которых более 10 лет проживали в этой части города, характеризуются более низкими показателями по шкале АПГАР (оценка в 8-10 баллов, отражающая нормальное функциональное состояние ребёнка, имела место у 69,3% новорожденных на юге города и 81,2% в центре города - р< 0,001); хронической гипоксией, дисгармоничностью физического развития (высокорослость при дефиците массы тела) [Л.П. Сливина, 2000]. Подобные и некоторые другие изменения здоровья регистрируются у детей более старшего возраста.

Сообщается также о более частой обращаемости населения в южной части Волгограда в скорую помощь по поводу аллергических заболеваний органов дыхания, в т.ч. бронхиальной астмы, более высоким уровнем заболеваемости детей острым бронхитом и пневмонией [С.Е. Першин, 2002]. На этой территории дети и подростки предъявляют существенно больше жалоб со стороны нервной системы, желудочно-кишечного тракта, чем их сверстники, проживающие в центре этого города (р< 0,01 – 0,001). Кроме того, на юге города дети чаще болеют, у них более выражена дисгармоничность физического развития. Показатели соматического здоровья, основанные на комплексе морфофункциональных показателей, были снижены у детей на указанной территории экологического неблагополучия [Л.П. Сливина, 2002].

В южной части города показатели заболеваемости новорожденных в окружении предприятий, ”Каустик” наблюдаются в 70,3% случаев при 44,2% в контрольном районе (центр города). Тяжелое осложнение ОРЗ и ОРВИ у детей - острый стенозирующий ларинготрахеит регистрируется в этом районе в 1,2-1,3 раза чаще, чем в центре города, причем у детей регистрируется и более тяжелое течение этого заболевания [А.П. Барановский, 1991].

В атмосферном воздухе другой северной части города, находящейся в зоне влияния выбросов алюминиевого завода, регистрируются повышенные концентрации фтористого водорода, взвешенных частиц оксида углерода, бенз(а)пирена. На этой территории проживает около 150 тыс. человек и среди детского населения выше заболеваемость болезнями системы кровообращения, органов дыхания; в 1,5-2,5 раза выше обращаемость населения за скорой медицинской помощью по поводу приступов бронхиальной астмы и асматического бронхита [С.Е. Першин, 2003].

Проведенное многолетнее эпидемиологическое наблюдение 1983-1996 г.г.) за показателями смертности от различных заболеваний выявило, что смертность от заболеваний органов дыхания почти во всех возрастных группах была заметно выше на территориях города с загрязненным атмосферным воздухом, чем на условно чистой территории. Так, в наиболее подверженной этой причине смерти группе населения – детей первого года жизни - показатель в “центральной” зоне составляет 10,5, в то время как в “южной” – “химической” зоне - 17,2, а в “северной” – “машиностроительной” – 24,1 [Л.К. Квартовкина и соавт., 197].

В гг. Волгограде и Волжском средний показатель рождения детей с врожденными пороками челюстно-лицевой области составляет 1,44 +- 0,07 на 1000 новорожденных при показателе 1,13+-0,08 в сельской местности (р< 0,01).

В 1996-1997 г.г. в г. Волгограде была выполнена работа по оценке риска для здоровья населения стационарных источников загрязнения атмосферного воздуха. Оценка риска для здоровья была проведена как от воздействия химических канцерогенов, так и от неканцерогенных твердых частиц (РМ 10) при ингаляционном пути поступления. Риск смерти от выбросов РМ 10 установлен на уровне 850-2700 дополнительных случаев смерти в год для населения всего города (около 1 миллиона человека), тогда как канцерогенный риск, обусловленный выбросами канцерогеннов, оценивается 13 дополнительными случаями заболеваний раком в год. [73]

Постоянное население Волгоградской области на 1 января 2003 г. составило 2615,9 тысяч человек и относительно 2002 г. уменьшилось на 20,6 тыс. чел. Из них городское население составляет 70,0%. Естественная убыль за 2002 г. достигла 18306 чел., из них мужчин – 10154.

Среди городского населения убыло 13 571 чел., или 74.1 % от общего числа убывших (данные Волгоградского областного комитета госстатистики).

В 2002 г. рождаемость несколько возросла, но возросла и смертность. Количество умерших превысило число родившихся в 1,74 раза. Демографические показатели на 1000 жителей в целом по области в 2002 г. составили: рождаемость - 9,4(8,6 в 2001 г.); смертность - 16,3 (15,9 в 2001 г.); естественный прирост - 6,9 (- 7,3 в 2001 г.).

Для смертности в области, как и в целом по России, характерна сверхсмертность мужчин (средняя продолжительность их жизни упала и стала меньше 60 лет), причем в трудоспособном возрасте.

На всех административных территориях области естественный прирост имеет отрицательное значение, что свидетельствует о санитарном неблагополучии.

В структуре причин младенческой смертности МС основными остаются причины, возникающие в перинатальном периоде (50,9%), врожденные аномалии (27,8%), болезни органов дыхания (8,3%), несчастные случаи (5,2%), инфекционные и паразитарные болезни (1,8%). В структуре МС неуправляемые причины по-прежнему выходят на первые места.

Несмотря на спад промышленного производства, уровень загрязнения атмосферного воздуха характеризуется как очень высокий. Комплексный индекс загрязнения атмосферы, рассчитанный для 5 постоянных загрязнителей, определяющих основной вклад в загрязнение атмосферного воздуха пыль, диоксид азота, сероуглерод, формальдегид, аммиак), на основании данных по гидрометеорологии и мониторингу окружающей среды за 1995—2000 гг. составил – 10,5; 1996-5,6; 1997-9,2; 1998-9,8; 1999—11,3; 2000-12,3. Было проведено ранжирование основных загрязнителей по тесноте связей их уровня и распространенности ВПР среди детей за 1995—2000 гг. Установлена прямая корреляционная зависимость между заболеваемостью ВПР детей (0—14 лет) и загрязнением атмосферного воздуха формальдегидом коэффициент корреляции г +0,66).

Тем не менее, включенные в разработку данные за 1999—2001 гг., из-за небольших выборов позволяют с полным основанием судить о взаимосвязи распространенности ВПР и степенью загрязнения окружающей среды, так как существует множество и других факторов, оказывающих влияние на развитие врожденных пороков.

В 2002 г. в г. Волгограде продолжалось ведение оперативного медико-экологического мониторинга с использованием данных подстанций скорой помощи для контроля за индикаторными группами заболеваний. Обращаемость по поводу бронхиальной астмы и астматического бронхита продолжала оставаться повышенной на юге города. В Кировском и Красноармейском районах Южный промузел — в 1,5—4,6 раза выше, чем в других районах. Это, видимо, связано с особенностями экологической обстановки на данной территории.

Наибольший уровень обращаемости населения в связи с острым нарушением мозгового кровообращения наблюдается в Краснооктябрьском районе – в 1,9-7,1 раза выше, чем в других районах города. Причину этого заболевания установить не удалось. Многолетняя динамика в большинстве районов стабильна.

Специфической характеристикой многолетнего медико-экологического неблагополучия на промышленных территориях являются показатели смертности населения. Так, усредненные годовые показатели смертности от всех болезней органов дыхания, кроме новообразований, на 100 тыс. чел. населения составляли: в южных районах (Красноармейском, Кировском) – 46, в северных (Краснооктябрьском, Тракторозаводском) – 39, в центре (Центральный район) – 32. Удельный вес смертности от рака легких, гортани среди всех опухолей составлял на юге – 25%, на севере – 21%, в центре – 18%.

Средняя продолжительность проживания на территории до смерти от злокачественных новообразований органов дыхания (что косвенно свидетельствует об интенсивности многолетнего поглощения населением химических канцерогенных веществ через атмосферный воздух) составила: в Центральном районе – 39,7 года, в Тракторозаводском – 33,0 года, в Краснооктябрьском – 36,2 года, в Кировском – 21,9 года, в Красноармейском – 21,4 года. Таким же разом, в северных районах продолжительность проживания была на 3,4-6,7 года, в южных районах на 17,8 – 18,3 года меньше, чем в центре.

Известно, что количество врожденных пороков развития может быть связан с уровнем загрязненности внешней среды некоторыми химическими веществами, тератогеннами. Количество врожденных пороков развития на 1000 детей показывает зависимость от ОС в центре этот показатель 3,2, в северных районах – 4,5, в южных районах – 4,2 – 5,5.

Таким образом, негативный экологический потенциал, накопленный на промышленных территориях Волгограда за многие годы продолжает отрицательно сказываться на здоровье населения.

Авторами Филатовым Б.Н., Вишневецкой Л.П., Сливиной А.П., и др. проделан. Оценка риска для здоровья населения от стационарных источников загрязнения атмосферного воздуха в г. Волгограде. [71-74]

Волгоград - промышленный город на юге европейской части России с населением более одного миллиона человек узкой, длинной полосой тянется вдоль западного берега реки Волги. При этом расстояние между северной и южной границами города превышает 70 км. Предприятия разбросаны по всему городу с частичной концентрацией промзон в северной и южной его частях.

Предприятия Волгоградской области как отмечалось ранее в работе, выбрасывают в атмосферу большие объемы загрязняющих веществ. Оценка риска для здоровья от загрязнения воздуха в Волгограде базировалась на использовании методологии, рекомендованной, в первую очередь Агентством по охране окружающей среды США.

Для анализа рассеивания загрязняющих веществ в атмосферном воздухе от стационарных источников была выбрана российская стандартизированная модель "Эколог". В связи с принятыми ограничениями моделирования и довольно сжатыми данными, оценка риска для здоровья в данном исследовании была проведена только с учетом ингаляционного воздействия химических веществ, как основного пути поступления их в организм.

На основании информации о стационарных источниках выбросов, полученной от природоохранных органов, был сформирован список загрязняющих веществ, поступающих в атмосферу города. Поскольку в Волгограде за счет системы разрешений на выбросы регулируются их объемы более чем для 200 предприятий, то для данного исследования были отобраны только 29 предприятий, суммарный вклад которых в загрязнение атмосферы города составляет более 90% от общего объема всех выбросов, поступающих от стационарных промышленных источников (в тоннах в год в течение года.).

Был выбран 1995 год, поскольку уровни выбросов в этом году могут быть предположительно близкими к таковым и в будущем (при условии сохранения действующего природоохранного законодательства). Основное внимание было сконцентрировано на оценке риска воздействия взвешенных веществ, единственных из неканцерогенных агентов, поскольку в настоящее время существуют хорошо аргументированные доказательства и количественные характеристики их воздействия на состояние здоровья населения как общего количества взвешенных веществ (TSP), так и более специфичных РМ10 (частиц диаметром 10 микрон и менее). Взвешенные вещества составляли наибольший процент среди неканцерогенов по данным инвентаризации выбросов. Твердые частицы являются очевидным фактором, вызывающим риск для здоровья в большинстве городов, поэтому при ограниченных финансовых ресурсах следует в первую очередь сфокусировать внимание на их оценке.

В настоящее время в России отсутствуют гигиенические нормативы для взвешенных веществ, как для единого вещества, но вместо этого разработано множество гигиенических нормативов для различных типов взвешенных веществ. Поэтому материалы инвентаризаций выбросов, представляемые для управленческих решений, не включают непосредственно все "частицы". В данном же исследовании различные типы взвешенных твердых частиц, выбрасываемых предприятиями, были объединены в единый "класс" - общий объем выбросов взвешенных веществ.[Филатов Б.Н., Вишневецкая Л.П.] [74]

На первом этапе оценки воздействия в Волгограде определялась численность населения, подвергающегося воздействию. По данным карты плотности населения на территории города было выбрано 20 рецепторных точек. Каждая точка представляет 5 % населения города или примерно 50 000 человек. Площади, соответствующие каждой из рецепторных точек, из-за неодинаковой плотности населения различны. Каждая из 20 рецепторных точек расположена в ближайшем узле пересечения линий координатной сетки дисперсионной модели.

На следующем этапе необходимо было определить концентрации в точках воздействия (КТВ) на основе данных моделирования рассеивания выбросов химических веществ-загрязнителей. Для хронических эффектов, таких как канцерогенный риск и риск увеличения уровней смертности от воздействия твердых взвешенных частиц, необходимо иметь среднегодовые величины КТВ. КТВ были рассчитаны с помощью модели "Эколог", разработанной для прогнозирования 20-минутных фактических концентраций загрязнителей атмосферного воздуха, которые в дальнейшем сопоставляются с максимальными разовыми ПДК с учетом сценария "наихудших условий".

Для каждого предприятия КТВ моделировались только в тех рецепторных точках, которые расположены вблизи предприятия, а не во всех 20-ти точках. Поскольку Волгоград сильно вытянут в длину, это позволило сократить расчеты для пренебрежимо малых концентраций загрязнителей в приземном слое рецепторных точек, расположенных на значительном удалении от специфических источников выбросов. Моделирование было проведено только для тех рецепторных точек, которые оказались расположенными в тех же зонах, что и источники загрязнения.

Эти оценки максимальных краткосрочных выбросов являются необходимыми в дальнейшем для сравнения полученных по результатам моделирования концентраций атмосферного воздуха с гигиеническими нормативами короткого периода осреднения (такими как максимальные разовые ПДК).

Оценки выбросов в виде среднегодовых концентраций являются более подходящими для целей расчетов риска, основанных на методологии Американского Агентства по охране окружающей среды.

Твердые частицы, в частности фракция PM1Q, рассматриваются в настоящем исследовании как неканцерогенное вещество. U.S. ЕРА не приводит никаких данных о критериях риска для этих веществ - факторов потенциала, или референтной дозы. Поэтому необходимо было разработать критерий риска для РМ10. В существующей литературе приводятся многочисленные данные, убедительно свидетельствующие об увеличении случаев смертности и ряда заболеваний от воздействия твердых взвешенных веществ. При разработке коэффициента дополнительных случаев смерти от РМ10 сравнимого с ЕФР для канцерогенов, использовалась литература, посвященная воздействию твердых частиц (например, Wilson and Spengler, 1996). Критерий риска был разработан для кратковременного воздействия (вдыхания твердых взвешенных частиц с диаметром менее 10 мкм). Такое предположение вполне оправданно, поскольку воздействие происходит каждый день. Однако по этой же причине его можно интерпретировать и как хроническое воздействие.

Характеристика риска в данном исследовании включала оценку риска дополнительных случаев рака от воздействия канцерогенов и риска дополнительных случаев смерти от РМ10. Для характеристики риска использовались: фактор канцерогенного потенциала и коэффициент риска смерти для РМ10 концентрации в рецепторной точке воздействия (КТВ) и хроническая суточная доза для канцерогенов (CDI).

Результаты оценки риска свидетельствуют, что общее число ожидаемых случаев рака среди населения составляет 13 дополнительных случаев в год. Наибольшему риску подвергаются люди, проживающие в южной части города. Результаты исследования также свидетельствуют, что приблизительно 2700 дополнительных случаев смерти в год ожидаются в Волгограде от взвешенных веществ, выбрасываемых 29 предприятиями. Этот риск воздействия РМ10 на население Волгограда приблизительно в 200 раз выше, чем при воздействии потенциальных канцерогенов (даже если предположить, что все случаи рака заканчиваются смертельным исходом). Риск смерти от взвешенных веществ оказался неприемлемо высоким в Волгограде и, по-видимому, потребует пристального рассмотрения со стороны руководителей природоохранных органов и администрации города.

С целью снижения риска для здоровья от воздействия взвешенных веществ целесообразно осуществить ряд мер. Во-первых, необходимо разработать единый гигиенический норматив для РМ10 аналогичный американскому стандарту, или рекомендуемому ВОЗ. Тем более, что с учетом эпидемиологических данных и результатов анализа, приведенных выше в качестве примера, в США его собираются снизить с 50 до 20 мкг/м3. В нашей же стране при существующем среднесуточном нормативе взвешенных веществ, равном 150 мкг/м3, он составил бы 90 мкг/м3 для РМ10 при использовании коэффициента пересчета от суммарного количества взвешенных веществ - 0,6. Во-вторых, следует разработать универсальную методику, позволяющую в каждом конкретном случае с большей достоверностью устанавливать долю РМ10 в суммарном количестве взвешенных веществ.

В-третьих, и это касается не только взвешенных веществ, но и всех атмосферных загрязнителей, при расчете рассеивания с помощью дисперсионных моделей необходимо ориентироваться на установление непосредственно годовых концентраций, желательно с параллельным определением пиковых (максимальных) уровней. Поэтому решение этого вопроса зависит от создания надежной системы метеорологического мониторинга, данные которого позволили бы разрабатывать адекватные модели для непосредственного расчета концентраций атмосферных загрязнителей длительного периода осреднения по времени, которые имеют важнейшее значение при определении риска хронического воздействия.

Что касается твердых частиц от двух основных предприятий (Волгоградский алюминий - РУСАЛ и металлургический комбинат "Красный Октябрь"), определяющих риск смерти от РМ10 в Волгограде, анализ возможных вариантов снижения риска был осуществлен в рамках проекта RAMP, где было выделено несколько вариантов низко- и высокозатратных мероприятий по очистке воздуха от взвешенных веществ и для данных двух предприятий, включая капитальные, эксплуатационные и операционные затраты.

В последующем анализе управления риском, который проведен в рамках того же проекта по оценке риска, рассчитана экономическая эффективность вариантов очистки воздуха от вредных веществ. (А. Голуб - Центр эколого-экономических исследований). Был проведен сравнительный анализ различных вариантов проектов. Он показал, что удельные затраты на снижение риска смерти от РМ10 остаются достаточно низкими до определенного уровня снижения риска (возможно, вплоть до 30%), а затем удельные затраты существенно возрастают. Ряд проектов позволяют дешево сократить риск дополнительной ежегодной смертности. В целом удельные затраты на уменьшение единицы смертности колеблются от 2,7 тыс. руб. (менее 100 долл.) до 175 тыс. руб. (менее 7000 долл.). Это представляется очень дешевым способом сократить риск дополнительной смертности, даже если он преувеличен на 300-500%. Приоритизация проектов по затратам на сокращение выбросов и по затратам на сокращение риска приводит к одинаковым результатам для данного набора проектов. Это позволяет сделать важный вывод о том, что в России оценку эффективности затрат можно проводить исходя из сокращения выбросов. Поскольку анализ риска не является общепринятой процедурой в России и основой принятия решений о направлениях природоохранной политики, то приоритизация природоохранных проектов в этих условиях на первой стадии может проводиться по эффективности затрат на сокращение выбросов.

Выводы. Установлена связь продолжительности жизни человека, частоты и тяжести нарушений репродуктивного здоровья женщин, здоровья их потомства с реальной опасностью воздействия экологически неблагоприятных факторов, характерных для промышленных агломераций. Полученные данные совместно с медиками позволяют прогнозировать экологически зависимое состояние на основе изучения показателей репродуктивного и неонатального состояния здоровья, как наиболее чувствительных к воздействию антропогенных факторов.

По материалам эколого-геохимических наблюдений была разработана постоянно-действующая карта экологической комфортности проживания на территории г. Волгограда. В соответствии с этой картой на 01.01.2008 г. около 70 % жителей северного и южного промышленных узлов Волгоградской агломерации проживает в условиях опасных для здоровья по экологическим показателям.


Литература

1. Безуглая Э.Ю. Метеорологический потенциал и климатические особенности загрязнения воздуха городов. – Л - Гидрометеоиздат, 1984.-184с

2. Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы.— Л. Гидрометеоиздат, 1975.-448c.

3. Влияние промышленных предприятий на окружающую среду // Тез. докл. Все союзной школы (4-8 декабря 1984., г. Звенигород). – Пущино: Наука, 1984.- 239 с.

4. Влияние человека на ландшафт // Вопросы географии. — М.: Мысль, 1977. - №106 – 207 с.

5. Миграция загрязняющих веществ в почвах и сопредельнъгх сферах // Тр. IV Всесоюзного совещания, Обнинск, июнь 1983. - М.: Гидрометеоиздат,. 1985.-208 с.

12. Wobber F. J. Russel O. R., Deely D. J. Multispectral aerial and orbital techniques for management of coal-mines areas. — Photogrammetria, 1975, vol. 31, N 4, p. 40—56.

68. Захаров В.М., А.С. Баранов, В.И. Борисов, А.В. Валецкий, Н.Г. Кряжева, Е.К. Чистякова, А.Т. Чубинишвили. Здоровье среды: методика оценки. Центр экологической политики России, Центр здоровья среды. – М., 2000. – 68 с.

69. Методические рекомендации по выполнению оценки качества среды по состоянию живых существ (оценка стабильности развития живых организмов по уровню асимметрии морфологических структур), Министерство природных ресурсов, 2003.

70. Вечер А.С. Основы физической биохимии. Минск, “ Высшая школа”, 1966. – 352 с.

71. Гродзинский А.М., Гродзинский Д.М. Краткий справочник по физиологии растений. Киев, “Наукова думка”, 1973. – 591 с.

72. Плешков Б.П. Биохимия сельскохозяйственных растений. М, «Колос», 1975.- 496 с.


[1] Дончева А.В., Козаков Л.К., Калуцков В.Н. Ландшафтная индикация загрязнения природной среды – М.: Экология, 1992.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...