Соотношение неопределённостей
Обнаружение волновых свойств микрочастиц означает, что классическая механика не может дать правильного описания поведения микрообъектов. Новая физическая теория, устанавливающая законы движения и взаимодействия микрочастиц и фотонов с учетом их волновых и корпускулярных свойств, была разработана, главным образом, тремя физиками: Э. Шредингером (австр.), В. Гейзенбергом (нем.) и П. Дираком (англ.) в начале ХХ века и получила название волновой или квантовой механики. В классической механике всякая частица движется по определённой траектории, так что ее координаты и импульс могут быть точно рассчитаны для любого момента времени. Совсем по иному обстоит дело, если рассматривается вопрос о локализации волнового процесса, т.е. о месте нахождения волны в данный момент времени. Ведь волна не имеет ни определенной траектории, ни определенной координаты. Т.о. возникает необходимость внести некоторые ограничения в применении к объектам микромира понятий классической механики. Эти ограничения сформулированы Гейзенбергом и получили название соотношений неопределенностей. Основное из них гласит: чем точнее определены какие-либо из координат частицы, тем больше неопределенность в значении составляющей импульса (или скорости) в том же направлении, и наоборот. Количественно это записывается так:
Δ x ·Δp x ≥ ђ Δ x ·Δυ x ≥ ђ/m, Δ y ·Δp y ≥ ђ Δ y ·Δυ y ≥ ђ/m, (3) Δ z ·Δp z ≥ ђ Δ z ·Δυ z ≥ ђ/m,
где Δ x, Δ y, Δ z – неопределенности координат; Δp x, Δp y, Δp z – неопределенности проекций импульса на оси – x, y, z; Δυ x, Δυ y, Δυ z – неопределенности проекций скоростей на соответствующие оси; m – масса микрочастицы; ђ = h/2π – постоянная Планка с крышечкой.
Из соотношения неопределенностей следует: если положение частицы точно известно (Δx=0), то в этом состоянии проекция импульса на ось х-ов совершенно не определена (Δpх → ∞), и наоборот. Покажем, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Рассмотрим мысленный опыт по дифракции потока электронов на щели шириной Δ x ~ λ, расположенной перпендикулярно к направлению движения частиц (рис. 3). До прохождения через щель p х = 0; ∆p х = 0, а координата x не определена, т.е. ∆ x → ∞. В момент прохождения через щель координата электрона имеет неопределенность ∆ x равную ширине щели. В то же время, из-за дифракции, электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2φ, где φ – угол дифракции. Теперь появляется неопределенность в значении составляющей импульса вдоль оси x -ов:
∆p х = p∙sinφ = h sinφ / λБ. (4)
Если даже ограничиться электронами, попадающими на экран в пределах центрального максимума, то sinφ найдем из условия 1-ого минимума на щели (bsinφ = kλ, где b – ширина щели, k – порядок минимума): ∆ x ∙sinφ = λБ. (5)
Подставляя выражение для sinφ в (4), после преобразования получим
Δ x ·Δpx = h (6)
Учитывая главные max более высоких порядков, куда тоже попадают электроны, окончательно будем иметь:
Δ x ·Δp x ≥ h ≥ ђ (7)
Следует подчеркнуть, что невозможность одновременного и точного определения координаты и соответствующей составляющей импульса не связана с несовершенством наших знаний или неточностью приборов, а является следствием специфических и вместе с тем объективных свойств микрообъектов. Проиллюстрируем оценку границ применимости теории на примерах. 1. Скорость движения электрона в электроннолучевой трубке составляет υ х= 106 м/с и определена с точностью до Δυ х= 102 м/с. Тогда неопределенность координаты:
Δ x ·Δυ x ≥ ђ/m, . Т.е. в данном случае можно говорить о точке падения каждого отдельного электрона на экран и о траектории. 2. Скорость движения электрона в атоме водорода υ х ~ 106 м/с, неопределенность координаты порядка диаметра атома Δ x = d ~ 10-10 м. Тогда неопределенность величины скорости Т.е. неопределенность скорости соизмерима с самой скоростью. Это означает, что электрон не может теперь рассматриваться как дискретная частица. Соотношение неопределенностей может быть записано для любой пары взаимосвязанных характеристик состояния микрочастиц, например, для энергии и времени пребывания в этом энергетическом состоянии: ΔЕ·Δt ≥ ђ. (8)
Из данного соотношения видно, что разброс энергии ΔЕ = ђ/Δt возрастает с уменьшением среднего времени пребывания системы в состоянии с энергией Е. Отсюда, следует, что частота излученного фотона также должна иметь неопределенность: Δ v = ΔЕ / h, (9) т.е. линии спектра, обусловленные переходом электронов между уровнями Е1 и Е2 с ΔЕ = Е1 – Е2, будут иметь размытие по частоте равное Δ v= v 0 ± ΔЕ / h, что подтверждается опытом.
ВОЛНОВАЯ ФУНКЦИЯ Дифракционная картина, наблюдаемая для микрочастиц, характеризуется неодинаковым распределением рассеянных частиц по разным направлениям. С точки зрения волновой теории это означает, что направлениям максимумов соответствует наибольшая интенсивность волн де Бройля, а минимумам – наименьшая. Т.е. интенсивность волны де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Т.о. дифракционная картина для микрочастиц является проявлением статистической закономерности. Это означает, что описание поведения микрочастиц должно носить вероятностный характер, что и является важнейшей отличительной особенностью квантовой механики от классической. Состояние микрочастиц в квантовой механике описывается с помощью, так называемой, волновой функции вида ψ = f(x,y,z,t). Ее называют еще ψ-функция. Квадрат модуля ψ-функции определяет вероятность обнаружения частицы в момент времени t в области с координатами: x и x + d x; y и y + d y; z и z + d z – т.е. в элементе объема dV = d x d y d z:
dW = | ψ |2 dV. (10)
Величина | ψ |2 = dW /dV – имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестностях точки с координатами x,y,z. Т.о. физический смысл имеет не сама ψ-функция, а квадрат её модуля – |ψ|2, которым и задается интенсивность волн де Бройля. Теперь вероятность найти частицу в момент времени t в объеме V будет: . (11) Очевидно, что объективность существования частицы во времени и в пространстве будет выражаться вероятностью достоверного события: . (12) Это соотношение является условием нормировки ψ- функции. Волновая функция позволяет рассчитать вероятность реализации тех или иных значений параметров микрообъекта или их средние величины, например, расстояние электрона от ядра атома или вероятность перехода электрона с одного энергетического уровня на другой, что в свою очередь позволяет оценить относительную интенсивность спектральных линий. Что бы ψ-функция являлась объективной характеристикой состояния микрочастицы она должна удовлетворять следующим условиям: быть 1) конечной, т.к. W ≤ 1; 2) однозначной, т.к. вероятность не может быть неоднозначной; 3) непрерывной, т.к. вероятность не может изменяться скачком.
УРАВНЕНИЕ ШРЕДИНГЕРА В зависимости от конкретных условий волновая функция, как основной носитель информации о корпускулярных и волновых свойствах микрочастиц должна иметь разный вид. Соответственно, уравнение из которого определяется вид ψ-функции должно быть волновым, подобно дифференциальному волновому уравнению механических или электромагнитных волн. Такое уравнение составлено в 1926 году Э. Шредингером. В наиболее простом случае для стационарных режимов, когда состояние движущейся частицы не зависит от времени U = const, оно имеет вид: , (13) где - оператор Лапласа, m – масса частицы, Е и U – полная и потенциальная энергии частицы. Следует иметь в виду, что уравнение Шредингера нельзя вывести из каких-либо ранее известных соотношений. Оно постулируется на основе большого числа опытных данных, подобно тому, как это имело место с законами динамики Ньютона. Правильность этого уравнения подтверждается согласием с опытом результатов, которые получают с его помощью. Это, в свою очередь, придает ему характер закона природы.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|