Системы линейных уравнений
⇐ ПредыдущаяСтр 2 из 2 Общий вид системы , i = 1, 2,..., m; j = 1, 2,..., n, - коэффициенты системы; - свободные члены; - переменные; Если все = 0, система называется однородной. Матричная запись системы линейных уравнений где Матрицу A называют матрицей (или основной матрицей) системы. Матрицу называют расширенной матрицей системы, а матрицу для которой AС = В, - вектор-решением системы. Вопрос 19. Теорема. (Правило Крамера):
Теорема. Система из n уравнений с n неизвестными в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам: xi = Di/D, где D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi. Di = Вопрос 20. (см. лекцию) Вопрос 21. Системой m линейных уравнений с n неизвестными называется система вида где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j– номер неизвестного, при котором стоит этот коэффициент. Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы. Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами. Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn. Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации: Система может иметь единственное решение. Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, то x1 + x2 равнялось бы одновременно нулю и единице. Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называетсянесовместной. Рассмотрим способы нахождения решений системы. МЕТОД ГАУССА Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы. Вновь рассмотрим систему из трёх уравнений с тремя неизвестными: . Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид: Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений: Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1. При использовании метода Гаусса уравнения при необходимости можно менять местами. Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы: и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований. К элементарным преобразованиям матрицы относятся следующие преобразования: перестановка строк или столбцов;
умножение строки на число, отличное от нуля; прибавление к одной строке другие строки. Вопрос 22.
Любая однородная система линейных алгебраических уравнений, ранг матрицы которой равен r, с помощью элементарных преобразований может быть приведена к каноническому виду: Общее решение однородной линейной системы, записанной в каноническом виде, очевидно, определяется формулами: Свободные переменные x r +1, x r +2,..., x m −1, x m могут принимать произвольные значения. Вычисленные по этим формулам n − r линейно независимых решений образуют фундаментальную систему решений: Тогда общее решение системы можно записать в вектороной форме в виде: Здесь С 1, С 2,..., Сn − r −1, Сn − r — произвольные константы. Вопрос 23. Квадратичные формы.
Определение: Однородный многочлен второй степени относительно переменных х1 и х2 Ф(х1, х2) = а 11
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1 и х2.
Определение: Однородный многочлен второй степени относительно переменных х1, х2 и х3
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.
Рассмотрим квадратичную форму двух переменных. Квадратичная форма имеет симметрическую матрицу А = . Определитель этой матрицы называется определителем квадратичной формы.
Пусть на плоскости задан ортогональный базис . Каждая точка плоскости имеет в этом базисе координаты х1, х2. Если задана квадратичная форма Ф(х1, х2) = а 11 , то ее можно рассматривать как функцию от переменных х1 и х2.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|