Структурная организация почек
Почки у млекопитающих обычно бобовидной формы, за исключением некоторых жвачных: у крупного рогатого скота почка фрагментирована, но у лосей фрагментация более выражена. Почки располагаются на задней брюшной стенке за пределами брюшной полости, на равном расстоянии от позвоночного столба и окружены фасцией, под которой жировая прослойка. Паренхима почки окружена фиброзной капсулой, покрывающей выпуклый наружный край органа. Внутренний, вогнутый край формирует ворота почки, открывающие доступ в почечную пазуху, в которой располагается почечная лоханка и через которые входят артерия, нервы, а также выходят вена, лимфатические сосуды и мочеточник. Анатомически почка млекопитающих разделена на две зоны: внешнюю корковую красно-коричневого цвета и внутреннюю мозговую, разделенную на наружную (прилежащую к корковой) лилово-красного цвета и сосочек беловато-желтого цвета (рис. 8.1). Масса почек по отношению к массе тела составляет 1/200 его часть. Ежеминутно через почку проходит 1/4 всего объема крови, выбрасываемой сердцем.
По данным микроскопических исследований, почка состоит из множества не сообщающихся друг с другом (как морфологически, так и функционально) структурно-функциональных единиц — нефронов, обеспечивающих весь комплекс образования и концентрации мочи, и. только на выходе соединяющихся в собирательные трубки. В почке крупного рогатого скота 8 млн нефронов, у свиней — 1,5 млн, овец — 1 млн, крысы — 62 тыс., соба-
21* Рис. 8.2. Схема юкстамедуллярного (А) и поверхностного (Б) нефронов: I —корковое вещество; II —наружная и III — внутренняя зоны мозгового вещества; 1 — клубочки; 2, 3 — извитая и прямая части проксимального сегмента; 4— нисходящее колено петли Генле; 5 — тонкое восходящее колено петли Генле; 6— толстое восходящее колено петли Генле; 7—дистальный извитый каналец; 8— связующий отдел; 9, 10— собирательная трубка ки — 816 тыс., а у человека около 2 млн. Нефрон состоит из нескольких последовательно соединенных отделов, располагающихся в корковом и мозговом веществе почки. По степени погружения в корковое вещество различают три типа нефронов: суперфициальные, ж-тракортикальные и юкстамедул-лярные (рис.8.2). Начальный отдел каждого нефрона представляет собой сосудистый клубочек, окруженный капсулой Шумлянского — Боумена. Клубочек капилляров (мальпигиев клубочек) формируется приносящим сосудом — арте-риолой, распадающейся на множество (до 50) капиллярных петель, которые затем сливаются в выносящем сосуде. Капсула Шумлянского — Боумена окружает сосудистый клубочек подобно шаровидному бокалу, через узкое горло которого входят приносящий и выносящий сосуды, а вся внутренняя полость заполнена петлями капилляров мальпигиева клубочка (рис. 8.3). Приносящая Выносящая артериола ортериола
Внутрикапил- Висцеральный (внутренний) листок капсулы состоит из подоци-тов, которые морфологически связаны с капиллярами клубочка. Процесс ультрафильтрации жидкости из просвета капилляров в пространство капсулы Шумлянского — Боумена связан с движением фильтрата через три морфологически различных слоя — эндотелий капилляров, базальную мембрану и эпителиальные клетки, формирующие висцеральный листок капсулы. Для обеспечения этого процесса капилляры выстланы уплощенными эн-дотелиальными клетками, причем их высота может составлять всего 0,15...1,2мкм, а в теле эндотелиоцитов образуются отверстия — фенестры. Между эндотелием капилляров и подоцитами лежит мощный слой — базальная мембрана (150...300нм). Сами подоциты в процессе дифференцировки образуют удлиненные отростки (педикулы), между которыми имеются узкие пространства (щелевые диафрагмы) шириной 35...45 нм. Педикулы покрыты слоем полианионов сиалогликопротеинов, которые во многом определяют характер процессов ультрафильтрации при образовании первичной мочи (рис. 8.4). Париетальный листок капсулы образован базальной мембраной и слоем клеток эпителия кубической формы, который переходит в почечный каналец, состоящий из трех отделов: проксимального сегмента, извитого и прямого канальцев. Прямая часть проксимального канальца переходит в тонкий отдел петли Генле.
Проксимальный извитый каналец начинается непосредственно от полости капсулы Шумлянского — Боумена и делает два-три изгиба в корковой зоне почки. Особенность клеток этого отдела нефрона определяется наличием развитой щеточной каемки, представляющей собой микроворсинки — выросты апикальной плазматической мембраны высотой до 1 мкм. Цитоплазма клеток этого отдела содержит большое количество вакуолей, лизосом, микротелец. В базальной части клеток концентрируются многочислен-
Клубочковый капилляр Фенестры
ные митохондрии, расположенные в складках базальной плазматической мембраны. Клетки прямой части проксимального канальца содержат несколько меньшее число внутриклеточных включений и митохондрий; складки базальной плазматической мембраны и микроворсинки менее развиты. Тонкий нисходящий отдел петли Генле спускается в мозговое вещество почки, где поворачивает на 180°, и тонкое восходящее колено направляется в корковую зону. Клетки тонкого отдела петли Генле уплощены, несут на своей поверхности редкие небольшие микроворсинки. Диаметр восходящего канальца несколько больше нисходящего, а клетки лишены микроворсинок на апикальной поверхности.
Тонкий восходящий каналец переходит в толстый восходящий каналец петли Генле, для клеток которого характерны обилие митохондрий и базальная исчерченность цитоплазмы. В коре почки в зоне расположения клубочков прямой восходящий каналец переходит в извитый дистальный каналец, ультраструктура которого весьма сходна с его предшественником толстым прямым восходящим канальцем. За дистальным извитым канальцем следует связующий каналец, соединяющий его с собирательной трубкой. По собирательным трубкам, сливающимся в выводные протоки, моча направляется в почечную лоханку, из которой по мочеточникам поступает в мочевой пузырь. Особенность кровоснабжения почек заключается в том, что втекающая в почку кровь последовательно поступает в расположенные одна за другой капиллярные сети. Капилляры мальпигие-ва клубочка формируются из широкой (до 50 мкм) артериолы, которая является веточкой междолевых артерий, получающих кровь из почечной артерии. Давление крови в этих капиллярах значительно выше, чем во всех других капиллярах тела (60...90 мм рт. ст.). Это связано с тем, что приносящий сосуд шире и короче других артериол, а выносящий значительно уже, и кровь испытывает значительное сопротивление при выходе из мальпигиева клубочка. Выносящий (артериальный) сосуд вновь разветвляется, образуя вторую сеть почечных капилляров, оплетающих канальцы (рис. 8.5): давление в них значительно ниже (20...40 мм. рт. столба). В капиллярной сети почки происходят газообмен и обмен веществ между кровью и канальцами.
В зоне вхождения приносящих и выносящих сосудов располагается юкстагломерулярный аппарат. Юкстагломерулярный аппарат состоит из миоэпителиальных клеток, располагающихся в виде манжетки вокруг приносящих артериол и клеток плотного пятна дистального извитого канальца. Основные функции юкстагло-мерулярного аппарата заключаются в регуляции водйо-солевого обмена, поддержании постоянства артериального давления и синтезе биологически активных веществ. Через почку протекает около 15...20 % всей крови, выбрасываемой в аорту, причем почечный кровоток не зависит от изменений кровоснабжения других орга- Моча Рис. 8.5. Схема распределения кровеносных сосудов в нефроне нов брюшной полости. Значительные изменения в кровообращении почки наступают только при интенсивной мышечной нагрузке и под действием адреналина, а также при значительных кровопотерях. Анализируя топографические особенности различных типов не-фронов, следует отметить, что суперфициальные нефроны, составляющие 20...30 % всего рабочего объема, расположены поверхностно и имеют короткую петлю Генле. Интракортикальные нефроны составляют 60...70 % и несут основную нагрузку в процессах ультрафильтрации и концентрации мочи. Юкстамедуллярных нефронов значительно меньше, их клубочки расположены на границе коркового и мозгового вещества почки, а выносящие артериолы — длинные капиллярные сосуды — идут в глубину мозгового вещества параллельно петлям Генле. Юкстамедуллярные нефроны
наряду с процессами формирования мочи участвуют в регу-ляторных механизмах, синтезируя и перенося в кровь физиологически активные вещества, т. е. осуществляют эндокринную функцию почки. Почка является важным звеном в рефлекторной регуляции постоянства состава и объема внутренней среды организма. Эфферентные нервы играют существенную роль в организации рефлексов почки. Они представлены симпатическими (от солнечного сплетения) и парасимпатическими (от блуждающего нерва) нервными волокнами. МОЧЕОБРАЗОВАНИЕ Процесс мочеобразования состоит из следующих процессов: фильтрации в почечных клубочках, реабсорбции (обратного всасывания) в почечных канальцах, секреции и синтеза. Клубочковая ультрафильтрация. Образование мочи включает две фазы: клубочковую ультрафильтрацию — образование первичной мочи и канальцевую реабсорбцию — образование вторичной мочи, поэтому этот процесс называется фильтрационно-реабсорбционным. Функциональной особенностью начальной части нефрона является фильтрация плазмы крови через гломерулярный фильтр, который состоит из эндотелия капилляров мальпигиевого клубочка, развитой базальной мембраны и эпителия висцерального листка капсулы. Фенестры эндотелия — отверстия до 100 нм, свободно пропускают воду и растворенные в ней вещества, кроме форменных элементов крови и крупных молекул.
Структура базальной мембраны, представленной фибриллярным веществом, сцементированным электронно-прозрачным аморфным матриксом, обеспечивает функции «молекулярного сита» с ячейками около 2,9 нм и отрицательным зарядом. Третий слой гломерулярного фильтра формируют отростки подоцитов, между которыми находится пространство — межклеточные щели до 10 нм, между стенками, покрытыми гликокаликсом, щелевидное пространство составляет около 3 нм. Эта часть фильтра также несет отрицательный заряд и препятствует проникновению в первичную мочу значительной части белков плазмы крови. Отростки подоцитов заполнены элементами цитоскелета, способными сокращаться и расслабляться, и тем самым активно участвуют в процессе фильтрации, откачивая фильтрат в полость капсулы. Расположенные между капиллярами мезангиальные клетки, сокращаясь и расслабляясь, изменяют активную площадь поверхности клубоч-кового фильтра. В капиллярах клубочков значительно более высокое давление крови, чем в других капиллярах тела, причем за счет различий в диаметре входящего и выходящего сосудов ток крови замедляется и создаются условия для «выдавливания» части плазмы за пределы капиллярного русла. Фильтрационное давление, обусловленное гидростатическим давлением крови (60...90 мм рт. ст.), должно преодолевать онкотическое давление белков плазмы крови (25...30 мм рт. ст.) и давление жидкости в полости капсулы (15...20 мм рт. ст.). Фильтрационное давление (ФД) представляет собой разность между гидростатическим давлением (РТ) крови в капиллярах клубочка и суммой онкотического давления (Р0) плазмы крови и давления первичной мочи (Рм): ФД = Рт - (Р0 + Рм) = 70 - (30 + 20) = 20 мм рт. ст. Таким образом, эффективное (фильтрационное) давление, вызывающее переход плазмы крови в полость капсулы Шумлян-ского — Боумена, составляет всего 20...30 мм рт. ст. Первичная моча (клубочковый ультрафильтрат) по содержанию аминокислот, глюкозы, мочевины, креатинина, ионному составу и низкомолекулярных комплексов идентична плазме крови. Она практически не содержит белки анионной природы, а для сохранения равновесия Доннана (см. гл. 2) в первичной моче концентрация хлора, бикарбонатов выше, а натрия и калия ниже. Процесс фильтрации характеризуется скоростью клубочковой фильтрации (СКФ) и определяется объемом ультрафильтрата (первичной мочи), образованного за единицу времени (1 мин). СКФ зависит от объема протекающей через почки крови, фильтрационного давления, фильтрационной поверхности и количества функционирующих нефронов. В условиях физиологической нормы СКФ поддерживается на достаточно постоянном уровне за счет механизма ауторегуляции, включающего миогенную регуляцию тонуса приносящего сосуда (артериолы) и изменение соотношения тонуса входящего и выходящего в клубочек сосудов, причем эти механизмы обеспечивают постоянство кровотока в клубочках и фильтрационного давления. Наличие регуляторных систем, опосредованных физиологически активными веществами (ренин-ангиотензинная система, кинины, простагландины), способствует изменению фильтрации в результате изменения артериального давления, площади активной фильтрационной поверхности и тонуса подоцитов. Конечный результат эффективности работы почки в процессе ультрафильтрации определяется и числом одновременно функционирующих нефронов. Если в обычных условиях функционирует около 10 % нефронов, то при усиленной нагрузке число работающих структурно-функциональных единиц многократно возрастает. СКФ определяется при сопоставлении концентраций вещества, переходящего из плазмы в первичную мочу, и в дальнейшем при прохождении канальцев нереадсорбируемое. Таким веществом может являться инулин (полисахарид с молекулярной массой 5200,
встречающийся только в растениях). По концентрации инулина в плазме крови (/7ИН) и в определенном объеме конечной мочи (ИМИН) рассчитывают коэффициент очищения инулина или клиренс инулина: Для определения СКФ инулин необходимо капельно вводить в кровоток, поэтому данную трудоемкую процедуру заменили определением клиренса эндогенного вещества — креатинина, образующегося в организме и не подвергающегося реабсорбции, концентрация которого в плазме достаточно стабильна (проба Реберга). Объем образующейся первичной мочи очень велик. По разности концентраций некоторых веществ (сульфатов) в первичной и конечной моче можно определить, сколько воды всосалось обратно в кровь. Концентрация сульфатов в конечной моче составляет 0,18, а в первичной — 0,002 %, т. е. концентрация возрастает в 90 раз. Следовательно, для образования 1 л конечной мочи необходимо, чтобы через канальцы прошло 90 л первичной. В норме скорость клубочковой фильтрации всегда превышает 100 мл в 1 мин (при расчете на 1,7 м2 поверхности тела), а мочеотделения обычно равна 0,8...2 мл в 1 мин. Таким образом, в полость начального отдела нефрона из плазмы профильтровывается такой объем первичной мочи, который более чем в 100 раз превышает выделяемый за это время почками. Поэтому вполне очевидно, что в норме мочеотделение мало зависит от клубочковой фильтрации: если обратное всасывание составляет 99 % от клубочковой фильтрации, то даже увеличение последней вдвое усилит мочеотделение лишь с 1 до 2 мл за 1 мин, тогда как уменьшение реабсорбции только на 10 % приведет к десятикратному увеличению диуреза. Канальцевая реабсорбции. В зависимости от локализации отдела канальцев различают проксимальную и дистальную реабсорб-цию. Проксимальная реабсорбция обеспечивает полное всасывание глюкозы, белков, аминокислот и витаминов. В проксимальном отделе реабсорбируется 2/3 профильтровавшейся воды и натрия, калия, двухвалентных катионов, хлора, бикарбонатов, фосфатов. Четверть профильтровавшегося натрия реабсорбируется в петле Генле и 8... 10 % всасывается в конечных отделах нефрона и собирательных трубках. Особенность проксимальной реабсорбции в том, что натрий всасывается с осмотически эквивалентным объемом воды и в конце проксимального отдела остается только 1/3 ультрафильтрата, изоосмотичного плазме крови (рис. 8.6). Проницаемость стенки канальца для воды и ионов определяется свойствами апикальных клеточных мембран, выстилающих каналец. Наружная медуллярная собирательная трубка
Внутренняя медуллярная собирательная трубка Рис. 8.6. Схема канальцевой реабсорбции Поверхность апикальной мембраны у клеток проксимального канальца очень велика за счет образования многочисленных микроворсинок щеточной каемки. В проксимальном отделе нефрона существует два механизма всасывания воды и ионов: активный транспорт натрия с пассивной реабсорбцией бикарбоната и воды; пассивный транспорт хлоридов с пассивной реабсорбцией натрия и воды. В начальном участке канальцев натрий входит в клетки эпителия пассивно по концентрационному градиенту, так как в клетке постоянно поддерживается низкая концентрация этих ионов. Благодаря электрохимическому градиенту, т. е. естественному электроотрицательному заряду на внутренней поверхности мембраны клеток, происходит перемещение положительно заряженных ионов натрия внутрь клетки. Натрий выводится через базо-латеральные поверхности клеток с помощью натрий-калиевых насосов, использующих для своей работы энергию АТФ. С ионами натрия пассивно всасывается анион бикарбоната. Хлориды абсорбируются пассивно в конечных участках проксимальных канальцев через зону межклеточных контактов. Вместе с ними в форме сопряженного транспорта (котранспорта) реабсорбируются натрий и вода (рис. 8.7). Проксимальная реабсорбция глюкозы и аминокислот осуществляется с помощью специальных переносчиков, локализованных в щеточной каемке апикальной клеточной мембраны и функционально связана с реабсорбцией натрия. Перенос глюкозы и ами-
нокислот из клеток эпителия в межклеточное пространство также связан с активным удалением натрия из клетки через базолате-ральную мембрану с затратой энергии АТФ. Такой вид транспорта называют вторично активным или симпортом. На мембране щеточной каймы переносчик присоединяет транспортируемое вещество и ион натрия. Благодаря заряду мембраны и низкому содержанию натрия в цитоплазме клеток транспортный комплекс перемещается внутрь клетки, где распадается с освобождением натрия и транспортируемого вещества. Натрий удаляется в результате деятельности натрий-калиевой помпы, локализованной в базолате-ральной мембране, а глюкоза либо аминокислоты по градиенту концентрации поступают в кровь. Для реабсорбции одной молекулы глюкозы используется одна молекула переносчика, поэтому при избытке глюкозы в крови, а следовательно, и в ультрафильтрате может происходить полная загрузка всех молекул переносчика и излишек глюкозы уже не реабсорбируется и выделяется с мочой. Таким образом, существует определенный лимит «максимального канальцевого транспорта веществ» — традиционное название «почечный порог выведения», и после достижения максимума реабсорбции глюкоза и некоторые другие «пороговые вещества» появляются в отделяемой моче. Порог выведения — это такая концентрация вещества в крови, при которой оно не может быть полностью реабсорбировано в канальцах и попадает в конечную мочу. Вещества, которые не реабсорбируются в канальцах и выделяются пропорционально их накоплению в крови, называют непороговыми, например мочевина, инулин, креатинин, сульфаты и др. % Рис. 8.7. Схема внутриклеточной реабсорбции натрия Дистальная реабсорбция ионов и воды. В этом отделе нефрона происходит активная реабсорбция около 10 % натрия, что создает значительный градиент осмотического давления между мочой и межклеточной тканью. Хлор всасывается пассивно вслед за натрием. Эпителий дистального канальца в обмен на ионы натрия удаляет в мочу Н-ионы (этот вид ионообменных процессов называется антипорт). Наряду с этим в дистальном отделе активно всасываются калий, кальций и фосфаты. Концентрирование и разведение мочи. Среди позвоночных только у млекопитающих и птиц образуется моча, гиперосмотичная по отношению к плазме крови. В ходе эволюции складывалась различная степень способности к концентрации мочи: при необходимости сберегать воду у пустынных животных моча в 25 раз концентрированнее плазмы крови, а у животных, имеющих свободный доступ к воде (бобр, свинья), концентрирующие возможности выражены весьма умеренно (табл. 8.1.).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|