Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тема 2.4Управление виртуальной памятью

Тема 5.1 Основное управление памятью

Память компьютера (Memory) - устройство для запоминания данных. В зависимости от характера использования различают внутреннюю или внешнюю память.

Внутренняя память

Оперативная память (ОП) предназначена для временного хранения выполняемых программ и данных, обрабатываемых этими программами. Это энергозависимая память. Физически реализуется в модулях ОЗУ (оперативных запоминающих устройствах) различного типа. При выключении электропитания вся информация в оперативной памяти исчезает.

Объём хранящейся информации в ОЗУ составляет от 32 до 512 Мбайт и более. Занесение информации в память и её извлечение, производится по адресам. Каждый байт ОП имеет свой индивидуальный адрес (порядковый номер). Адрес – число, которое идентифицирует ячейки памяти (регистры). ОП состоит из большого количества ячеек, в каждой из которых хранится определенный объем информации. ОП непосредственно связана с процессором. Возможности ПК во многом зависят от объёма ОП.

Кеш память - очень быстрая память малого объема служит для увеличения производительности компьютера, согласования работы устройств различной скорости.

Специальная - постоянная, Fiash, видеопамять и тд.

Постоянное запоминающее устройство (ПЗУ) – энергонезависимая память для хранения программ управления работой и тестирования устройств ПК. Важнейшая микросхема ПЗУ – модуль BIOS (BasicInput/OutputSystem – базовая система ввода/вывода), в котором хранятся программы автоматического тестирования устройств после включения компьютера и загрузки ОС в оперативную память. Это Неразрушимая память, которая не изменяется при выключении питания

Перепрограммируемая постоянная память (FlashMemory) – энергонезависимая память, допускающая многократную перезапись своего содержимого

CMOS RAM (ComplementaryMetal-OxideSemiconductor) - память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, о режимах его работы. Содержимое изменяется программой, находящейся в BIOS (BasicInputOutputSystem).

Видеопамять – запоминающее устройство, расположенное на плате управления дисплеем и предназначенное для хранения текстовой и графической информации, отображаемой на экране. Содержимое этой памяти сразу доступно двум устройствам – процессору и дисплею, что позволяет изменять изображение на экране одновременно с обновлением видеоданных в памяти.


Тема 5.2 Подкачка

Подкачка страниц (англ. paging; иногда используется термин swapping от swap, /swɔp/) — один из механизмов виртуальной памяти, при котором отдельные фрагменты памяти (обычно неактивные) перемещаются из ОЗУ во вторичное хранилище (жёсткий диск или другой внешний накопитель, такой как флеш-память), освобождая ОЗУ для загрузки других активных фрагментов памяти. Такими фрагментами в современных ЭВМ являются страницы памяти.

Временно выгруженные из памяти страницы могут сохраняться на внешних запоминающих устройствах как в файле, так и в специальном разделе на жёстком диске (partition), называемые соответственно swap-файл и swap-раздел. В случае откачки страниц, соответствующих содержимому какого-либо файла (например, memory-mappedfiles), они могут удаляться. При запросе такой страницы она может быть считана из оригинального файла.

Когда приложение обратится к откачанной странице, произойдет исключительная ситуация PageFault. Обработчик этого события должен проверить, была ли ранее откачана запрошенная страница, и, если она есть в swap-файле, загрузить ее обратно в память.

Файл подкачки — это своеобразное дополнение к оперативной памяти (которая занимается временным хранением данных для быстрой доставки их на обработку процессору) Вашего компьютера. Даже не столько дополнение, сколько её уширение или, можно сказать, продолжение. Дело в том, что когда не хватает оперативной памяти системе некуда деваться, а виснуть, ясное дело, никому не хочется (и компьютер тому не исключение), а посему используется этакая дополнительная память — файл подкачки. Казалось бы, зачем тогда оперативная память, если можно пользоваться жестким диском?

 

Дело в том, что скорость работы жесткого диска, а именно чтения\загрузки туда данных и поиска их там, значительно ниже нежели скорость оперативной памяти, а посему файл подкачки может использоваться только как помощь, но не может является заменой оперативной памяти в силу меньшей пропускной способности.

 

Сам по себе принцип файла подкачки направлен на разгрузку оперативной памяти т.е., если одновременно запустить много программ сильно загружающих RAM (оперативную память), то так или иначе, часть этих программ будет неактивна (свернуты или попросту не использующиеся в данный момент) и, как следствие, их данные будут выгружаться в менее быструю область, т.е. в файл подкачки, а данные активных в данный момент программ (скажем текущей игры) будут находится непосредственно в оперативной памяти. Когда же Вы обратитесь к неактивной программе (т.е., например, развернете её) — данные из файла подкачки перейдут непосредственно в оперативную память дабы ускорить работу. В общих чертах всё это выглядит примерно так.

 

При острой нехватке в системе памяти файл подкачки используется напрямую и в него выгружаются и данные активных программ. В случае же отсутствия\слишком маленького файла подкачки (само собой, при учете нехватки оперативной памяти) в системе может начаться куча проблем от жалоб последней на отсутствие памяти и до сбоев программ\самой системы.


 

Аутентификация

Присвоение субъектам и объектам доступа личного идентификатора и сравнение его с заданным перечнем называется идентификацией. Идентификация обеспечивает выполнение следующих функций:

- установление подлинности и определение полномочий субъекта при его допуске в систему,

- контролирование установленных полномочий в процессе сеанса работы;

- регистрация действий и др.

Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности. Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.

Идентификация позволяет субъекту (пользователю, процессу, действующему от имени определенного пользователя, или иному аппаратно-программному компоненту) назвать себя (сообщить свое имя).Посредством аутентификации вторая сторона убеждается, что субъект действительно тот, за кого он себя выдает. В качестве синонима слова " аутентификация " иногда используют словосочетание "проверка подлинности".

Общая процедура идентификации и аутентификации пользователя при его доступе в АС представлена на рис. 2.10. Если в процессе аутентификации подлинность субъекта установлена, то система защиты информации должна определить его полномочия (совокупность прав). Это необходимо для последующего контроля и разграничения доступа к ресурсам.

По контролируемому компоненту системы способы аутентификации можно разделить на аутентификацию партнеров по общению и аутентификацию источника данных. Аутентификация партнеров по общению используется при установлении (и периодической проверке) соединения во время сеанса. Она служит для предотвращения таких угроз, как маскарад и повтор предыдущего сеанса связи. Аутентификация источника данных – это подтверждение подлинности источника отдельной порции данных.

По направленности аутентификация может быть односторонней (пользователь доказывает свою подлинность системе, например при входе в систему) и двусторонней (взаимной).

 

Рис. 2.10. Классическая процедура идентификации и аутентификации

 

Обычно методы аутентификации классифицируют по используемым средствам. В этом случае указанные методы делят на четыре группы:

1. Основанные на знании лицом, имеющим право на доступ к ресурсам системы, некоторой секретной информации – пароля.

2. Основанные на использовании уникального предмета: жетона, электронной карточки и др.

3. Основанные на измерении биометрических параметров человека – физиологических или поведенческих атрибутах живого организма.

4. Основанные на информации, ассоциированной с пользователем, например, с его координатами.

1. Наиболее распространенными простыми и привычными являются методы аутентификации, основанные на паролях – секретных идентификаторах субъектов. Здесь при вводе субъектом своего пароля подсистема аутентификации сравнивает его с паролем, хранящимся в базе эталонных данных в зашифрованном виде. В случае совпадения паролей подсистема аутентификации разрешает доступ к ресурсам АС.

Парольные методы следует классифицировать по степени изменяемости паролей:

- методы, использующие постоянные (многократно используемые) пароли,

- методы, использующие одноразовые (динамично изменяющиеся) пароли.

2. В последнее время получили распространение комбинированные методы идентификации, требующие, помимо знания пароля, наличие карточки (token) – специального устройства, подтверждающего подлинность субъекта.

Карточки разделяют на два типа:

- пассивные (карточки с памятью);

- активные (интеллектуальные карточки).

3. Методы аутентификации, основанные на измерении биометрических параметров человека (см. таблицу 2.6), обеспечивают почти 100 % идентификацию, решая проблемы утраты паролей и личных идентификаторов. Однако такие методы нельзя использовать при идентификации процессов или данных (объектов данных), так как они только начинают развиваться (имеются проблемы со стандартизацией и распространением), требуют пока сложного и дорогостоящего оборудования. Это обусловливает их использование пока только на особо важных объектах и системах.

Примерами внедрения указанных методов являются системы идентификации пользователя по рисунку радужной оболочки глаза, отпечаткам ладони, формам ушей, инфракрасной картине капиллярных сосудов, по почерку, по запаху, по тембру голоса и даже по ДНК.

Таблица 2.6

Примеры методов биометрии

Физиологические методы Поведенческие методы
• Снятие отпечатков пальцев • Сканирование радужной оболочки глаза • Сканирование сетчатки глаза • Геометрия кисти руки • Распознавание черт лица • Анализ подписи • Анализ тембра голоса • Анализ клавиатурного почерка  

 

Новым направлением является использование биометрических характеристик в интеллектуальных расчетных карточках, жетонах-пропусках и элементах сотовой связи. Например, при расчете в магазине предъявитель карточки кладет палец на сканер в подтверждение, что карточка действительно его.

Назовем наиболее используемые биометрические атрибуты и соответствующие системы.

· Отпечатки пальцев. Такие сканеры имеют небольшой размер, универсальны, относительно недороги. Биологическая повторяемость отпечатка пальца составляет 10-5 %. В настоящее время пропагандируются правоохранительными органами из-за крупных ассигнований в электронные архивы отпечатков пальцев.

· Геометрия руки. Соответствующие устройства используются, когда из-за грязи или травм трудно применять сканеры пальцев. Биологическая повторяемость геометрии руки около 2 %.

· Радужная оболочка глаза. Данные устройства обладают наивысшей точностью. Теоретическая вероятность совпадения двух радужных оболочек составляет 1 из 1078.

· Термический образ лица. Системы позволяют идентифицировать человека на расстоянии до десятков метров. В комбинации с поиском данных по базе данных такие системы используются для опознания авторизованных сотрудников и отсеивания посторонних. Однако при изменении освещенности сканеры лица имеют относительно высокий процент ошибок.

· Голос. Проверка голоса удобна для использования в телекоммуникационных приложениях. Необходимые для этого 16-разрядная звуковая плата и конденсаторный микрофон стоят менее 25 $. Вероятность ошибки составляет 2 – 5%. Данная технология подходит для верификации по голосу по телефонным каналам связи, она более надежна по сравнению с частотным набором личного номера. Сейчас развиваются направления идентификации личности и его состояния по голосу – возбужден, болен, говорит правду, не в себе и т.д.

· Ввод с клавиатуры. Здесь при вводе, например, пароля отслеживаются скорость и интервалы между нажатиями.

· Подпись. Для контроля рукописной подписи используются дигитайзеры.

4. Новейшим направлением аутентификации является доказательство подлинности удаленного пользователя по его местонахождению. Данный защитный механизм основан на использовании системы космической навигации, типа GPS (GlobalPositioningSystem). Пользователь, имеющий аппаратуру GPS, многократно посылает координаты заданных спутников, находящихся в зоне прямой видимости. Подсистема аутентификации, зная орбиты спутников, может с точностью до метра определить месторасположение пользователя. Высокая надежность аутентификации определяется тем, что орбиты спутников подвержены колебаниям, предсказать которые достаточно трудно. Кроме того, координаты постоянно меняются, что сводит на нет возможность их перехвата.


 

Отказоустойчивость

Диски и файловые системы, используемые для упорядоченного хранения данных на дисках, часто представляют собой последнее спасение после неожиданного краха системы, разрушившего результаты труда пользователя, полученные за последние несколько минут или даже часов, но не сохраненные на диске. Однако те данные, которые пользователь записывал в течение своего сеанса работы на диск, останутся, скорее всего, нетронутыми. Вероятность того, что система при сбое питания или программной ошибке в коде какого-либо системного модуля будет делать осмысленные действия по уничтожению файлов на диске, пренебрежимо мала. Поэтому при перезапуске операционной системы после краха большинство данных, хранящихся в файлах на диске, по-прежнему корректны и доступны пользователю. Коды и данные операционной системы также хранятся в файлах, что и позволяет легко ее перезапустить после сбоя, не связанного с отказом диска или повреждением системных файлов.

Тем не менее, диски также могут отказывать, например, по причине нарушения магнитных свойств отдельных областей поверхности.

Другой причиной недоступности данных после сбоя системы может служить нарушение целостности служебной информации файловой системы, произошедшее из-за незавершенности операций по изменению этой информации при крахе системы. Для борьбы с этим явлением применяются так называемые восстанавливаемые файловые системы, которые обладают определенной степенью устойчивости к сбоям и отказам компьютера. Комплексное применение отказоустойчивых дисковых массивов и восстанавливаемых файловых систем существенно повышают такой важный показатель вычислительной системы, как общая надежность.

Причины нарушения целостности файловых систем

Восстанавливаемость файловой системы — это свойство, которое гарантирует, что в случае отказа питания или краха системы, когда все данные в оперативной памяти безвозвратно теряются, все начатые файловые операции будут либо успешно завершены, либо отменены безо всяких отрицательных последствий для работоспособности файловой системы.

Любая операция над файлом (создание, удаление, запись, чтение и т. д.) может быть представлена в виде некоторой последовательности подопераций. Последствия сбоя питания или краха ОС зависят от того, какая операция ввода-вывода выполнялась в этот момент, в каком порядке выполнялись подоперации и до какой подоперации продвинулось выполнение операции к этому моменту.

Избыточные дисковые подсистемы RAID

В основе средств обеспечения отказоустойчивости дисковой памяти лежит общий для всех отказоустойчивых систем принцип избыточности, и дисковые подсистемы RAID (дословно — «избыточный массив недорогих дисков») являются примером реализации этого принципа. Идея технологии RAID-массивов состоит в том, что для хранения данных используется несколько дисков, даже в тех случаях, когда для таких данных хватило бы места на одном диске. Организация совместной работы нескольких централизованно управляемых дисков позволяет придать их совокупности новые свойства, отсутствовавшие у каждого диска в отдельности.


 

Тема 2.4Управление виртуальной памятью

 

Понятие виртуальной памяти

Разработчикам программного обеспечения часто приходится решать проблему размещения в памяти больших программ, размер которых превышает объем доступной оперативной памяти.

Уже достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением было разбиение программы на части. Когда первая часть заканчивала свое выполнение, то она вызывала другую часть. Все части хранились на диске и перемещались между памятью и диском средствами операционной системы.

 

Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную оперативную память. Пользователь использует программы так, как будто в его распоряжении имеется однородная оперативная память большого объема, но в действительности все данные, используемые программой, хранятся на одном или нескольких разнородных запоминающих устройствах, обычно на дисках, и при необходимости частями отображаются в реальную память

Виртуальным называется ресурс, который пользовательской программе представляется обладающим свойствами отличными от тех, что он в действительности имеет.

Например, программе разрешено использовать большую виртуальную память, называемую иногда виртуальным адресным пространством. Ее объем может даже превосходить всю доступную реальную память ЭВМ. Содержимое виртуальной памяти, используемой программой, хранится на некотором внешнем устройстве (внешней памятью HDD). По необходимости части этой виртуальной памяти отображаются в реальную память. Ни о внешней памяти, ни о ее отображении в реальную память, программа ничего не знает. Она написана так, как будто бы виртуальная память существует в действительности.

Виртуальная память компьютера выступает в качестве дополнения к оперативной памяти и является частью оперативной памяти, расположенной на жестком диске. Пользователю компьютера это дает ощущение, что он имеет ОЗУ с неограниченным объемом.

Суть концепции виртуальной памяти заключается в следующем. Информация, с которой работает активный процесс, должна располагаться в оперативной памяти. В схемах виртуальной памяти у процесса создается иллюзия того, что вся необходимая ему информация имеется в основной памяти. Для этого, во-первых, занимаемая процессом память разбивается на несколько частей, например страниц. Во-вторых, логический адрес (логическая страница), к которому обращается процесс, динамически транслируется в физический адрес (физическую страницу). И, наконец, в тех случаях, когда страница, к которой обращается процесс, не находится в физической памяти, нужно организовать ее подкачку с диска. Для контроля наличия страницы в памяти вводится специальный бит присутствия, входящий в состав атрибутов страницы в таблице страниц.

Таким образом, в наличии всех компонентов процесса в основной памяти необходимости нет. Важным следствием такой организации является то, что размер памяти, занимаемой процессом, может быть больше, чем размер оперативной памяти.

Возможность выполнения программы, находящейся в памяти лишь частично, имеет ряд вполне очевидных преимуществ.

Программа не ограничена объемом физической памяти. Упрощается использование программ, поскольку можно задействовать большие виртуальные пространства, не заботясь о размере используемой памяти.

Поскольку появляется возможность частичного помещения программы (процесса) в память и гибкого перераспределения памяти между программами, можно разместить в памяти больше программ, что увеличивает загрузку процессора и пропускную способность системы.

 

Введение виртуальной памяти позволяет решать другую, не менее важную задачу – обеспечение контроля доступа к отдельным сегментам памяти и, в частности, защиту пользовательских программ друг от друга и защиту ОС от пользовательских программ. Пользовательский процесс лишен возможности напрямую обратиться к страницам основной памяти, занятым информацией, относящейся к другим процессам.

 

Организация виртуальной памяти 

Виртуальная память (VirtualMemory) представляет собой программно-аппаратное средство расширения пространства памяти, предоставляемой программе в качестве оперативной. Эта память физически реализуется в оперативной и дисковой памяти под управлением соответствующей операционной системы. Требуется так организовать работу процессора с дисковой памяти, чтобы возникала иллюзия работы только с оперативной памятью.

 

Чем полезна виртуальная память? В отличие от физической памяти, виртуальная память бесплатна и относительно неограниченна, если на жестком диске компьютера имеется несколько гигабайт свободного места. Такой подход позволяет эффективно расширить объем физической памяти.

 

Управление виртуальной памятью имеет своей целью:

1.Обеспечить возможность создания и выполнения на ЭВМ программ максимально допустимого размера.

2.Облегчить жизнь пользователя, сняв с него проблемы, связанные с ограниченным объемом ОП.

3.Устранить временную фрагментацию, максимально эффективно используя ОП ЭВМ, которая образуется при отсутствии необходимого участка программы/данных в ОП и определяется временем, необходимым для размещения необходимых данных в ОП.

 

Суть концепции виртуальной памяти (ВП) заключается в том, что адресное пространство (АП) процесса отделяется от адресов реальной оперативной памяти (РОП) и по необходимости динамически и по частям отображается в реальную память.

 

Модели виртуальной памяти.

 

Традиционные модели виртуальной памяти, использующие развитые средства аппаратной трансляции адресов сводятся к: сегментной; страничной; комбинированной сегментно-страничной.

 

В сегментной модели распределение реальной памяти производится блоками переменной длины (сегментами), в страничной – блоками постоянной длины (страницами). Первая модель удобнее для пользователя, так как позволяет структурировать адресное пространство программы, вторая – для ОС, т.к. управлять страницами одинакового размера проще. Современные аппаратные средства (Intel-Pentium) поддерживают сегментно-страничную модель, в которой адресное пространство процесса состоит из набора сегментов, а каждый сегмент – из набора страниц.

 


 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...