Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Арифметические основы ЭВМ




В настоящее время в обыденной жизни для кодирования числовой информации используется десятичная система счисления с основанием 10, в которой используется 10 элементов обозначения: числа 0,1,2,…8,9. В первом (младшем) разряде указывается число единиц, во втором – десятков, в третьем – сотен и т. д.; иными словами, в каждом следующем разряде вес разрядного коэффициента увеличивается в 10 раз.

В цифровых устройствах обработки информации используется двоичная система счисления с основанием 2, в которой используется два элемента обозначения: 0 и 1. Веса разрядов слева направо от младших разрядов к старшим увеличиваются в 2 раза, то есть имеют такую последовательность: 8421. В общем виде эта последовательность имеет вид:

и используется для перевода двоичного числа в десятичное. Например, двоичное число 101011 эквивалентно десятичному числу 43:

В цифровых устройствах используются специальные термины для обозначения различных по объёму единиц информации: бит, байт, килобайт, мегабайт и т. д.

Бит или двоичный разряд определяет значение одного какого-либо знака в двоичном числе. Например, двоичное число 101 имеет три бита или три разряда. Крайний справа разряд, с наименьшим весом, называется младшим, а крайний слева, с наибольшим весом, – старшим.

Байт определяет 8-разрядную единицу информацию, 1байт=23 бит, например, 10110011 или 01010111 и т. д., ,

Для представления многоразрядных чисел в двоичной системе счисления требуется большое число двоичных разрядов. Запись облегчается, если использовать шестнадцатеричную систему счисления.

Основанием шестнадцатеричной системы счисления является число 16= , в которой используется 16 элементов обозначения: числа от 0 до 9 и буквы А,B,C,D,E,F. Для перевода двоичного числа в шестнадцатеричное достаточно двоичное число разделить на четырёх – битовые группы: целую часть справа налево, дробную – слева направо от запятой. Крайние группы могут быть неполными.

Каждая двоичная группа представляется соответствующим шестнадцатеричным символом (таблица 1). Например, двоичное число 0101110000111001 в шестнадцатеричной системе выражается числом 5С39.

Пользователю наиболее удобна десятичная система счисления. Поэтому многие цифровые устройства, работая с двоичными числами, осуществляют приём и выдачу пользователю десятичных чисел. При этом применяется двоично – десятичный код.

Двоично – десятичный код образуется заменой каждой десятичной цифры числа четырёхразрядным двоичным представлением этой цифры в двоичном коде (См. таблицу 1). Например, число 15 представляется как 00010101 BCD (Binary Coded Decimal). При этом в каждом байте располагаются две десятичные цифры. Заметим, что двоично–десятичный код при таком преобразовании не является двоичным числом, эквивалентным десятичному числу.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...