Вопрос № 26 Химико–термическая оработка
Вопрос №25 Поверхностное упрочнение Конструкционная прочность часто зависит от состояния материала в поверхностных слоях детали. Одним из способов поверхностного упрочнения стальных деталей является поверхностная закалка. В результате поверхностной закалки увеличивается твердость поверхностных слоев изделия с одновременным повышением сопротивления истиранию и предела выносливости. Общим для всех видов поверхностной закалки является нагрев поверхностного слоя детали до температуры закалки с последующим быстрым охлаждением. Эти способы различаются методами нагрева деталей. Толщина закаленного слоя при поверхностной закалке определяется глубиной нагрева. Наибольшее распространение имеют электротермическая закалка с нагревом изделий токами высокой частоты (ТВЧ) и газопламенная закалка с нагревом газово-кислородным или кислородно-керосиновым пламенем. Вопрос № 26 Химико–термическая оработка Химико-термическая обработка — это процесс изменения химического состава, структуры и свойств поверхности стальных деталей за счет насыщения ее различными химическими элементами. При этом достигается значительное повышение твердости и износостойкости поверхности деталей при сохранении вязкой сердцевины. К видам химико-термической обработки относятся цементация, азотирование, цианирование и др. Цементация — это процесс насыщения поверхностного слоя стальных деталей углеродом. Цементация производится путем нагрева стальных деталей при 880…950 °С в углеродосодержащей среде, называемой карбюризатором. Различают два основных вида цементации — газовую и твердую. Газовая цементация проводится в газе, содержащем метан СН4 и оксид углеродаСО. Твердая цементация проводится в стальных ящиках, куда укладываются детали вперемешку с карбюризатором. Карбюризатором служит порошок древесного угля с добавкой солей Na2СО3 или ВаСО3.
Цементации подвергают стали с низким содержанием углерода (0,1…0,3 %). В результате на поверхности концентрация углерода возрастает до 1,0…1,2 %. Толщина цементованного слоя составляет 1…2,5 мм. Цементацией достигается только выгодное распределение углерода по сечению детали, Высокая твердость и износостойкость поверхности получается после закалки, которая обязательно проводится после цементации. Затем следует низкий отпуск. После этого твердость поверхности составляет HRC 60. Азотированием называется процесс насыщения поверхности стали азотом. При этом повышаются не только твердость и износостойкость, но и коррозионная стойкость. Проводится азотирование при температуре 500…600 °С в среде аммиака NН3 в течение длительного времени (до 60 ч.) Аммиак при высокой температуре разлагается с образованием активного атомарного азота, который и взаимодействует с металлом. Твердость стали повышается за счет образования нитридов легирующих элементов. Поэтому азотированию подвергают только легированные стали. Наиболее сильно повышают твердость такие легирующие элементы, как хром, молибден, алюминий, ванадий. Глубина азотированного слоя составляет 0,3 … 0,6 мм, твердость поверхностного слоя по Виккерсу доходит до НV 1200 (при цементации НV 900). К преимуществам азотирования перед цементацией следует отнести отсутствие необходимости в дополнительной термообработке, более высокую твердость и износостойкость, высокую коррозионную стойкость поверхности. Недостатками являются низкая скорость процесса и необходимость применения дорогих легированных сталей. Цианирование (нитроцементация) — это процесс одновременного насыщения поверхности стали угле родом и азотом. Проводится цианирование в расплавах цианистых солей NaСН или KCH или в газовой среде, содержащей смесь метана СН4 и аммиака NH3. Различают низкотемпературное и высокотемпературное цианирование.
Низкотемпературное цианирование проводится при температуре 500…600 °С. При этом преобладает насыщение азотом. Глубина цианированного слоя составляет 0,2…0,5 мм, твердость поверхности — НV 1000. При высокотемпературном цианировании температура составляет 800…950 °С. Преобладает насыщение углеродом. Глубина поверхностного слоя составляет 0,6…2,0 мм. После высокотемпературного цианирования следует закалка с низким отпуском. Твердость после термообработки составляет HRC 60.
37) Коррозия – это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды. Коррозия металлов – разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства. В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин «коррозия» употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется. По механизму По механизму коррозионного процесса различают два основных типа коррозии: химическую и электрохимическую. Строго отделить один вид от другого трудно, а иногда и невозможно. Под электрохимической коррозией подразумевают процесс взаимодействия металлов с электролитами в виде водных растворов, реже с неводными электролитами, например, с некоторыми органическими электропроводными соединениями или безводными расплавами солей при повышенных температурах. Под химической коррозией подразумевают взаимодействие металлической поверхности с окружающей средой, не сопровождающееся возникновением электрохимических (электродных) процессов на границе фаз. Она основана на реакции между металлом и агрессивным реагентом. Этот вид коррозии протекает в основном равномерно по всей поверхности металла. В связи с этим химическая коррозия менее опасна, чем электрохимическая.
Примером химической коррозии служат ржавление железа и покрытие патиной бронзы. В промышленном производстве металлы нередко нагреваются до высоких температур. В таких условиях химическая коррозия ускоряется. Многие знают, что на прокатке раскаленных кусков металла образуется окалина. Это типичный продукт химической коррозии. Химический механизм в виде проходящей на одном и том же участке поверхности в одну стадию и независящей от потенциала металла химической реакции без участия свободных электронов, когда металл, отдавая окислителю валентные электроны, вступает с ним в химическое соединение или образует ионы, может иметь место и в электролитах: разложение амальгам щелочных металлов растворами с высоким pH (В.Н. Коршунов и 3.А. Иофа) Me(Hg) + H20 = Me+ + ½ H2 + OH- + Hg (327) травление кремния в концентрированной щелочи (С.У. Изидинов, Т.И. Борисова, В.И. Веселовский) Si + 2Н2О = SiO2 + 2H2 (328) растворение железа, хрома и их сплавов в 0,1-н. H2SO4 (Я.М. Колотыркин и Г.М. Флорианович) Me + 2Н2О = Ме п+ + n⋅OН - + n / 2⋅Н2 (329) растворение алюминия в 50%-ной СН3СООН (Н.А. Михайлова, Н.П. Жук, И.А. Бартеньева и А.В. Турковская) 4А1 + 3O2 + 12Н + = 4А1 3+ + 6Н20 и др. Электрохимический механизм в виде протекающей с участием свободных электронов электрохимической реакции, при которой ионизация атомов металла и восстановление окислительного компонента коррозионной среды проходят не в одном акте и их скорости зависят от величины электродного потенциала металла, имеет место в подавляющем большинстве случаев коррозии металлов в электролитах и является, таким образом, преобладающим.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|