Основные виды геометрических моделей
Стр 1 из 11Следующая ⇒ Геометрическое моделирование Векторная и растровая графика. Графика бывает двух видов - векторная и растровая. Основное отличие - в принципе хранения изображения. Векторная графика описывает изображение с помощью математических формул. Основное преимущество векторной графики состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и еще одно преимущество - при изменении размеров изображения не изменяется размер файла. Растровая графика - это прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей). Растровое изображение можно сравнить с детской мозаикой, когда картинка составляется из цветных квадратиков. Компьютер запоминает цвета всех квадратиков подряд в определенном порядке. Поэтому растровые изображения требуют для хранения большего объема памяти. Их сложно масштабировать и еще сложнее редактировать. Чтобы увеличить изображение, приходится увеличивать размер квадратиков, и тогда рисунок получается "ступенчатым". Для уменьшения растрового рисунка приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается, его мелкие детали становятся неразборчивыми. Этих недостатков лишена векторная графика. В векторных редакторах рисунок запоминается как совокупность геометрических фигур - контуров, представленных в виде математических формул. Чтобы пропорционально увеличить объект, достаточно просто изменить одно число: коэффициент масштабирования. Никаких искажений ни при увеличении, ни при уменьшении рисунка не возникает. Поэтому, создавая рисунок, вы можете не думать о его конечных размерах - вы всегда можете изменить их.
Геометрические преобразования Ве́кторная гра́фика — это использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Рассмотрим, к примеру, окружность радиуса r. Список информации, необходимой для полного описания окружности, таков: радиус r; координаты центра окружности; цвет и толщина контура (возможно прозрачный); цвет заполнения (возможно прозрачный). Преимущества этого способа описания графики над растровой графикой: Минимальное количество информации передаётся намного меньшему размеру файла (размер не зависит от величины объекта). Соответственно, можно бесконечно увеличить, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая. При увеличении или уменьшении объектов толщина линий может быть постоянной. Параметры объектов хранятся и могут быть изменены. Это означает, что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах ((англ.)), которые ведут к наилучшей возможной растеризации на растровых устройствах. У векторной графики есть два фундаментальных недостатка. Не каждый объект может быть легко изображен в векторном виде. Кроме того, количество памяти и времени на отображение зависит от числа объектов и их сложности. Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет — трассировка растра обычно не обеспечивает высокого качества векторного рисунка. Векторные графические редакторы, типично, позволяют вращать, перемещать, отражать, растягивать, скашивать, выполнять основные аффинные преобразования над объектами, изменять z-order и комбинировать примитивы в более сложные объекты.
Более изощрённые преобразования включают булевы операции на замкнутых фигурах: объединение, дополнение, пересечение и т. д. Векторная графика идеальна для простых или составных рисунков, которые должны быть аппаратно-независимыми или не нуждаются в фотореализме. К примеру, PostScript и PDF используют модель векторной графи Линии и ломаные линии. Многоугольники. Окружности и эллипсы. Кривые Безье. Безигоны. Текст (в компьютерных шрифтах, таких как TrueType, каждая буква создаётся из кривых Безье). Этот список неполон. Есть разные типы кривых (Catmull-Rom сплайны, NURBS и т.д.), которые используются в различных приложениях. Также возможно рассматривать растровое изображение как примитивный объект, ведущий себя как прямоугольник.
Основные виды геометрических моделей Геометрические модели дают внешнее представление об объекте-оригинале и характеризуются одинаковыми с ним пропорциями геометрических размеров. Эти модели подразделяются на двумерные и трехмерные. Эскизы, схемы, чертежи, графики, живописные работы представляют собой примеры двумерных геометрических моделей, а макеты зданий, автомобилей, самолетов и т.д. – это трехмерные геометрические модели. Трёхмерная графика оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх. В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники. Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц: матрица поворота матрица сдвига матрица масштабирования Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/промасштабированный относительно исходного
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|