Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Законы термодинамики. Энергетика метаболических реакций.




Тема 1. Введение в молекулярную биологию. Химические основы жизни.

1. Признаки живой материи. Клеточный уровень организации живых систем.живой материи, отличающие ее от неживой.

  1. Определенный химический состав — живые организмы состоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Основными элементами живых существ являются С, О, N и Н.
  2. Клеточное строение — все живые организмы, кроме вирусов, имеют клеточное строение. Вне клетки жизни нет.
  3. Обмен веществ и энергозависимость — живые организмы являются открытыми системами, они зависят от поступления в них из внешней среды веществ и энергии.
  4. Саморегуляция (гомеостаз) — живые организмы обладают способностью поддерживать гомеостаз — постоянство своего химического состава и интенсивность обменных процессов.
  5. Раздражимость — живые организмы проявляют раздражимость, т.е. способность отвечать на определенные внешние воздействия специфическими реакциями.
  6. Наследственность — живые организмы способны передавать признаки и свойства из поколения в поколение с помощью носителей информации — молекул ДНК и РНК.
  7. Изменчивость — живые организмы способны приобретать новые признаки и свойства.
  8. Самовоспроизведение (размножение) — живые организмы способны размножаться — воспроизводить себе подобных.
  9. Индивидуальное развитие (онтогенез) — каждой особи свойствен онтогенез — индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). Развитие сопровождается ростом.
  10. Эволюционное развитие (филогенез) — живой материи в целом свойствен филогенез — историческое развитие жизни на Земле с момента ее появления до настоящего времени.
  11. Адаптация — живые организмы способны адаптироваться, т.е. приспосабливаться к условиям окружающей среды.

Уровни организации живой материи

1.Молекулярный- Начальный уровень организации живого. Предмет исследования - молекулы нуклеиновых кислот, белков, углеводов, липидов и других биологических молекул, т.е. молекул, находящихся в клетке. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

2. Клеточный Изучение клеток, выступающих в роли самостоятельных организмов (бактерии, простейшие и некоторые другие организмы) и клеток, составляющих многоклеточные организмы

3. Тканевый Клетки, имеющие общее происхождение и выполняющие сходные функции, образуют ткани. Выделяют несколько типов животных и растительных тканей, обладающих различными свойствами.

4. Органный У организмов, начиная с кишечнополостных, формируются органы (системы органов), часто из тканей различных типов.

5. Организменный Этот уровень представлен одноклеточными и многоклеточными организмами.

Биологические часы возникновения и развития жизни на Земле.

См в тел.

3. Относительные размеры клеток и их компонентов.(см в тел) Вирусы. Прокариоты. Формирование эукариот. Ви́рус неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток[комм. 2]. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей[3] (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, способные реплицироваться только в присутствии других вирусов (вирусы-сателлиты).

Вирусные частицы (вирионы) состоят из двух или трёх компонентов: генетического материала в виде ДНК или РНК (некоторые, например мимивирусы, имеют оба типа молекул); белковой оболочки (капсида), защищающей эти молекулы, и, в некоторых случаях, — дополнительных липидных оболочек. Наличие капсида отличает вирусы от вирусоподобных инфекционных нуклеиновых кислот — вироидов. В зависимости от того, каким типом нуклеиновой кислоты представлен генетический материал, выделяют ДНК-содержащие вирусы и РНК-содержащие вирусы; на этом принципе основана классификация вирусов по Балтимору. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые инфекционные белки и не содержат нуклеиновых кислот. Форма вирусов варьирует от простой спиральной и икосаэдрической до более сложных структур.

Тема 2. Биоэнергетика и метаболизм.

Законы термодинамики. Энергетика метаболических реакций.

Термодинамика – наука о тепловых явлениях, в которой не учитывается молекулярное строение тел. 1. Закон сохранения и превращения энергии (первое начало термодинамики), во-первых, утверждает существование качественных видов энергии (потенциальной[38], кинетической[39], механической, тепловой, электромагнитной и т.д.) и присущую им способность при определенных условиях превращаться друг в друга; во-вторых, указывает, что в любых процессах, происходящих в замкнутых системах (т.е. системе, не обменивающейся ни веществом, ни энергией с окружающим миром), численное значение энергии остается постоянным во времени. Закон рассеяния энергии. Всякая система стремится перейти к состоянию термодинамического равновесия, в котором тела обладают одинаковыми температурами и давлением. Все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы. Это приводит нас ко второму началу термодинамики: тепло не может само собой переходить от холодных тел к более нагретым; или тепловая энергия равномерно распределяется между всеми телами, и всякие тепловые процессы в любой системе полностью прекращаются. Эго приводит к тепловой смерти системы. Данное утверждение справедливо для замкнутых систем. Этот закон характеризует рост энтропии во времени. Т ретье начало термодинамики касается свойств веществ при низких температурах и утверждает невозможность охлаждения вещества до -273° С (температура абсолютного нуля).

Энергетический метаболизм в целом сопряжен с биосинтетическими и другими энергозависимыми процессами, происходящими в клетке, для протекания которых он поставляет энергию, восстановитель и необходимые промежуточные метаболиты. Сопряженность двух типов клеточного метаболизма не исключает некоторого изменения их относительных масштабов в зависимости от конкретных условий.

9. Факторы, влияющие на активность ферментов (концентрация субстрата, фермента, рН, температура, активаторы, ингибиторы). ктивность ферментов может быть усилена, ослаблена или подавлена за счет влияния ряда факторов (температуры, рН, наличия активаторов и ингибиторов, концентрации субстрата и фермента).

Температура. С повышением температуры скорость всех ферментативных реакций увеличивается. Оптимальная температура для действия большинства животных ферментов находится в интервале 40-50 0С, растительных __ 40-60 °С. При более высоких температурах активность снижается, и многие ферменты разрушаются уже при температуре 70-80 °С. Это явление называется тепловой инактивацией и происходит из-за тепловой денатурации белков. При низких температурах активность ферментов также снижается, но они не разрушаются.

Оптимальная температура не является постоянной величиной, она зависит от длительности температурного воздействия и влажности среды, в которой фермент действует. Ферменты очень чувствительны к нагреванию в присутствии значительного количества воды. И наоборот, при низкой влажности и в сухом состоянии ферменты выдерживают температуру близкую к 100 °С без значительной инактивации.

Влияние рН. Каждый фермент проявляет свое действие в определенных, довольно узких пределах значений рН. Различные ферменты отличаются друг от друга по оптимальным величинам рН. Для большинства гидролитических ферментов оптимум рН находится в интервале 3-6.

Присутствие активаторов и ингибиторов. Активность ферментов зависит от наличия в реакционной среде различных соединений.Вещества, которые повышают каталитическую активность ферментов, называются активаторами. В качестве активаторов могут выступать ионы металлов (натрия, калия, магния, кальция, цинка, меди, марганца, железа) и другие вещества (ионы йода, брома, хлора, SH-группы).

Существуют также соединения (ингибиторы), которые подавляют действие ферментов. Они могут быть общими и специфическими. Общие – это те, которые инактивируют действие всех ферментов. К ним относятся соли тяжелых металлов (свинца, серебра, ртути), трихлоруксусная кислота (ТХУ), танин. Специфические - действуют только на определенную группу ферментов. Для ферментов дыхания и брожения ингибиторами являются галогенсодержащие соединения (хлорацетфенол, йодацетамид и т.д.).

Ферментативные метаболические пути (катаболизм, анаболизм), регуляция. Понятие о карте метаболизма. Образование (окислительное фосфорилирование, субстратное фосфорилирование) и расходование (движение, трансмембранный перенос веществ, биосинтезы) энергии.

АНАБОЛИЗМ – так называются все процессы создания новых веществ, клеток и тканей организма.
Примеры анаболизма: синтез в организме белков и гормонов, создание новых клеток, накопление жиров, создание новых мышечных волокон – это все анаболизм. То есть, совокупность всех процессов в организме при которых происходит создание любых новых веществ и тканей – называется анаболизм!

КАТАБОЛИЗМ – является противоположностью анаболизма. То есть, это расщепление сложных веществ на более простые, а так же распад старых частей клеток и тканей организма.
Возможно, вам кажется что катаболизм – это что-то плохое, потому что это разрушение… На самом деле это не так, ведь расщепление жиров и углеводов для получения энергии это тоже катаболизм, а без этой энергии организм существовать не может.
Более того, эта энергия может быть направлена на синтез нужных веществ, на создание клеток и обновление организма, то есть на анаболизм. Анаболизм и катаболизм взаимосвязаны между собой.

Метаболизм – это совокупность химических реакций, протекающих в организме. При этом процессы, происходящие в просвете желудочно-кишечного тракта, не входят в понятие метаболизма, поскольку полость желудочно-кишечного тракта рассматривается как часть внешней среды. Метаболизм включает в себя более чем 100 000 разнообразных реакций, но существуют основные метаболические пути, построенные по единому плану. Такие пути могут быть линейными и разветвленными. Ферменты, катализирующие реакции, протекающие на этих путях, в организме объединены в мультиферментные системы. В мультиферментных системах продукт предыдущей реакции является субстратом для последующей.

Метаболизм – это двуединый процесс, складывающийся из 2-х частей: катаболизма и анаболизма. В ходе катаболизма происходит разрушение, расщепление сложных веществ до более простых. В процессе анаболизма организм синтезирует собственные сложные органические вещества из простых. Оба процесса связаны между собой большим числом реакций, хотя в клетке часто бывают пространственно разделены.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...