Место физики в системе наук.
Каждая философская школа пытается дать свое определение науки и религии. Наука – форма духовной деятельности людей ставящих перед собой задачу выработки и систематизации объективных знаний об окружающей реальности, являющаяся одной из форм общественного сознания. И как часть общественного сознания наука направлена на постижение закономерностей мира. Другой вариант – Наука — часть культуры, способ познания мира, в котором вырабатываются и теоретически систематизируются знания о действительности; знания, допускающие доказательство или эмпирическую проверку. Наука направлена на поиск закономерностей мира и производство знаний через объективные закономерности мира. Т.о. на мир мы смотрим, принимая мнение науки. Цель науки построение адекватной, цельной, удовлетворительной картины мира, и на её основе используя природные силы для удовлетворения потребностей людей. В целом наука служит триединой цели: описание, объяснение и предсказание. Предсказание в большой мере определяет ценность науки для человека. При сопоставлении религиозного и научно-рационалистического типов сознания уже на самом поверхностном уровне обнаруживается их противоположность. Наука служит целям ориентации человека в мире, ее усилия направлены на построение адекватной картины мироздания и на использование природных сил для нужд людей. Религия видит свою задачу в том, чтобы указать человеку «путь жизни», сформировать его жизненные установки и способ поведения. Для этого она предлагает человеку обратиться внутрь себя, утверждая, что именно здесь, в глубине души, может быть найден непосредственный контакт с первоосновой бытия, с главным принципом жизнеустроения. Установив этот контакт, человек получает точку опоры, необходимую, чтобы выстоять и не растерять свою душу в круговороте житейских обстоятельств. И религия, и наука стремятся дать ответ на вопрос, что такое человек, но их подходы к рассмотрению этой проблемы совершенно различны. Для науки человек — это предмет изучения, когда с помощью методов внешнего наблюдения или интроспекции констатируются изменения его психофизического состояния. В рамках религии человек осознается как бы изнутри того реально осуществляемого процесса, который обозначается словом «жизнь». Этот процесс состоит в выстраивании (сознательном или бессознательном) определенной последовательности мыслей, чувств, поступков, предполагающем возможность выбора того или иного «жизненного универсума». Концентрируя внимание на различных аспектах бытия, наука и религия апеллируют к различным сторонам (состояниям) человеческого сознания. Субъект науки и субъект веры радикально отличаются друг от друга. Создание рациональной картины мира — это результат деятельности человека-творца, использующего имеющийся у него потенциал интеллектуальных, моральных и физических сил для постижения и упорядочения тех аспектов «бытия-в-мире», которые осознаются им в качестве сущностей, принципиально отличных от «я», в котором сконцентрирована его «самость» (источник познавательной активности), т. е. в виде объектов. Взгляд на мир с позиции своего «я», сознание значимости последнего как творческого начала, ощущение автономии своей личности, выступающей в качестве «производящей причины» (субъекта) действий, вытекающая отсюда возможность свободного конструирования интеллектуальных миров, используемых в качестве инструмента преобразования реального мира, для создания «второй природы»,— все это фундаментальные предпосылки возникновения и развертывания научной, да и любого другого вида рациональной деятельности. Физика как наука изучает простейшие и вместе с тем наиболее общие свойства материального мира. Вследствие этой общности физика и ее законы лежат в основе всего естествознания, она является основой эволюции научных картин мира, способствует синтезу естественно-научного и гуманитарного знания. Философские проблемы физики включают в себя онтологические, логико-гносеологические и методологические основания. Специфика методов физического познания связана со структурностью, системностью и функциональными особенностями реальности. Онтологические проблемы физики включают в себя изучение и выявление общих свойств и законов структурной организации и развития различных типов природно-материальных систем и предполагают рассмотрение ряда важнейших понятий и принципов. В философском понимании мира понятие материи является одним из основных, ибо все его мировоззренческое содержание связано с раскрытием всеобщих свойств, законов, структурных отношений, движения и развития материи во всех ее формах — как природных, так и социальных. В физике понятие материи — также центральное, поскольку физика изучает основные свойства вещества и поля, типы фундаментальных взаимодействий, законы движения различных систем (простые механические системы, системы с обратной связью, самоорганизующиеся системы) и т.д. Эти свойства и законы определенным образом проявляются в технических, биологических и социальных системах, в силу чего физика широко используется для объяснения происходящих в них процессов. Все это сближает философское понимание материи и физическое учение о ее строении и свойствах.
38. Онтологические проблемы физики. Онтологические проблемы физики включают в себя изучение и выявление общих свойств и законов структурной организации и развития различных типов природно-материальных систем и предполагают рассмотрение ряда важнейших понятий и принципов. В философском понимании мира понятие материи является одним из основных, ибо все его мировоззренческое содержание связано с раскрытием всеобщих свойств, законов, структурных отношений, движения и развития материи во всех ее формах — как природных, так и социальных.
В физике понятие материи — также центральное, поскольку физика изучает основные свойства вещества и поля, типы фундаментальных взаимодействий, законы движения различных систем (простые механические системы, системы с обратной связью, самоорганизующиеся системы) и т.д. Эти свойства и законы определенным образом проявляются в технических, биологических и социальных системах, в силу чего физика широко используется для объяснения происходящих в них процессов. Все это сближает философское понимание материи и физическое учение о ее строении и свойствах. Всеобщими атрибутами материи выступают: движение, пр странство, время, структурность, системная организация и способность к саморазвитию, единство прерывности и непрерывности, а также ряд других свойств, находящих выражение в действии универсальных диалектических законов изменения и развития. Материя и ее атрибуты несотворимы и неуничтожимы, существу ют вечно и бесконечно многообразны по формам своих проявлений. Все явления в мире детерминированы естественными материальными связями и взаимодействиями, причинными отношениями и объективными законами природы. Физика также исходит из признания неразрывного единства материи, движения, пространства и времени. Все пространственно-временные свойства систем зависят от скорости их движения и структурных отношений в более общих системах, их масс и гравитационных потенциалов. Материя неисчерпаема по своей структуре, но на разных структурных уровнях проявляются различные формы движения и законы взаимодействия. Они отражаются в дифференцирующихся физических теориях, каждая из которых несводима к другим теориям и имеет определенные границы применимости. Вместе с тем между различными структурными уровнями существует тесная взаимосвязь и обусловленность, проявляющаяся во взаимной превращаемости различных форм материи и движения, наличии общих атрибутов, законов сохранения и движения. Это единство физика пытается отразить через разработку единой теории различных элементарных частиц и полей.
Сегодня известно несколько сотен элементарных частиц. Некоторые из них «живут» очень короткое время, быстро превращаясь в другие частицы. Часть элементарных частиц оказались неожиданно тяжелыми - даже тяжелее отдельных атомов. У большинства элементарных частиц есть античастицы, отличающиеся противоположными знаками электрического заряда и магнитного момента: для электронов — позитроны, для протонов - антипротоны, для нейтронов — антинейтроны и т.д. Многообразие микромира предполагает его единство через взаимопревращаемость частиц и полей. При этом частицам присуща масса покоя, тогда как электромагнитные и гравитационные поля и их кванты не имеют массы покоя, хотя обладают энергией, импульсом и другими свойствами. Поле и вещество нельзя противопоставлять друг другу. Если рассматривать структуру вещества, то во всех системах внутреннее пространство будет «занято» полями, точнее пространство будет выражать протяженность этих полей и частиц. Но на долю собственно частиц вещества приходится ничтожная часть объема системы. Вместе с тем частицы вещества нельзя представлять в виде каких-то микроскопических шариков с абсолютно резкими границами. Частицы неотделимы от различных полей и не существует абсолютно резкой границы, где кончается собственно частица и начинается ее внешнее поле. В пограничной области существует непрерывный взаимопереход полей и частиц. Так, протоны и нейтроны постоянно окружены облаком виртуальных пи-мезонов, входящих в их структуру; электроны, позитроны и другие заряженные частицы неразрывно связаны с электромагнитным полем. Единство прерывного и непрерывного в структуре материи выражается через единство корпускулярных и волновых свойств всех частиц, т.е. все микрочастицы материи обладают и корпускулярными, и волновыми свойствами. В зависимости от конкретных условий они проявляют себя либо как частица, либо как волна. Идея корпускулярно-волнового дуализма, выдвинутая Луи де Бройлем (1892-1987) в 1924 г., позволила построить теорию, охватывающую свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира. Развитие физики микромира в последние десятилетия показало неисчерпаемость свойств элементарных частиц и их взаимодействий. Все частицы, имеющие достаточно большую энергию, способны при взаимодействиях друг с другом к различным взаимопревращениям. Универсальная взаимопревращаемость частиц при больших энергиях взаимодействия свидетельствует о некоторой общности их структур, а также о возможности единых законов фундаментальных взаимодействий. Исследования в этом направлении привели к развитию кварковой модели структуры андронов (протонов, нейтронов, гиперонов, резонансов и мезонов). Кварки - это частицы, обладающие сложными свойствами - зарядом, «очарованием», «цветом». Кварки считаются «самыми элементарными» и могут соединяться друг с другом либо тройками, либо парами, либо кварк-антикварк. Из трех кварков состоят сравнительно тяжелые частицы - барионы. Более легкие пары кварк-антикварк образуют частицы, получившие название мезоны. Кварки скрепляются между собой сильным взаимодействием, переносчиками которого являются глюоны (они «склеивают» кварки в адроны).
Кварки до сих пор не удалось выделить в свободном состоянии, и есть даже предположение, согласно которому это вообще невозможно, так как с увеличением расстояний между кварками сила взаимодействия между ними не убывает, а, напротив, неограниченно возрастает, что исключает их существование вне элементарных частиц. В экспериментальных исследованиях столкновений частиц во встречных пучках в ускорителях, где общая энергия столкновений достигает сотен миллиардов электрон-вольт, вместо кварков наблюдается рождение мощных струй элементарных частиц. При этом число частиц возрастает с увеличением энергии столкновений. Последнее говорит о том, что структура элементарных частиц выражает не только их внутренние связи, но и является функцией энергии их внешних взаимодействий. На основе кварковой модели были предсказаны новые частицы. Связь, взаимодействие и движение — важнейшие атрибуты материи, без которых невозможно ее существование. Взаимодействие обусловливает объединение различных материальных элементов в системы, системную организацию материи. Все свойства тел производны от их взаимодействий, являются результатом их структурных связей между собой и отношений с внешней средой. Для всякого объекта существовать - значит взаимодействовать, как-то проявлять себя по отношению к другим телам. Наше познание материального мира осуществляется через раскрытие различных форм взаимодействия и движения тел. К настоящему времени известны четыре вида фундаментальных взаимодействий: о гравитационное — имеет универсальный характер и проявляется всегда как притяжение между всеми известными видами материи; является самым слабым из всех взаимодействий. В классической физике оно описывается известным законом тяготения Ньютона. В общей теории относительности гравитационное поле, создаваемое массами, связывается с кривизной пространственно-временного континуума. Гравитация вызывает «искривление» пространства и замедление хода времени, что сказывается на всех происходящих в системах процессах; электромагнитное - имеет также универсальный характер и существует между любыми телами. В отличие от гравитационного взаимодействия, которое всегда выступает в виде притяжения, электромагнитное взаимодействие может проявляться и как притяжение, и как отталкивание. Благодаря электромагнитным связям возникают атомы, молекулы и макроскопические тела. Электромагнитное взаимодействие в 100-1000 раз слабее сильного взаимодействия. Его переносчиками считаются фотоны (их масса покоя равна нулю); слабое взаимодействие - всевозможные микропроцессы с излучением нейтрино и антинейтрино. Оно менее универсально, чем гравитационное и электромагнитное, и распространяется на очень незначительных расстояниях. Слабые взаимодействия ответственны за многие микропроцессы, характеризуют все виды бета-превращений, являются необходимой стороной термоядерных реакций в звездах; сильное взаимодействие — обеспечивает связь протонов и нейтронов в ядрах атомов, кварков в нуклонах. Переносчиками сильного взаимодействия являются глюоны. Эти четыре типа фундаментальных взаимодействий лежат в основе всех других известных форм движения материи, в том числе возникающих, например, в космических системах и макротелах при сверхвысоких давлениях и температурах. Любые сложные формы движения при их разложении на структурные составляющие обнаруживаются как сложные модификации данных фундаментальных взаимодействий. Во второй половине XX в. внимание физиков сосредоточено на создании теории Великого объединения, раскрывающей с позиций квантово-релятивистских представлений сущность и основания единства четырех фундаментальных взаимодействий -электромагнитного, сильного, слабого и гравитационного. Эта задача одновременно является и задачей создания единой теории элементарных частиц (теории структуры материи). Итак, понимание материи актуализирует обсуждение вопроса в плане: субстанциальном — возникновения вещей и процессов; субстратном — строения различных уровней мироздания и человека. Современная физика исследует различные типы материальных систем и их структурные уровни. 39. Квантовая механика и объективность научного знания. Планетарная модель атома, предложенная Резерфордом, оказалась неустойчивой с точки зрения классической электродинамики Фарадея-Максвелла. Дело в том, что Максвелл, придавший идеям и открытиям Фарадея в области электромагнетизма математически законченную форму /т.н. уравнения Максвелла/ и сыгравший таким образом роль Ньютона XIX века, основывался, как и Галилей, на принципе непрерывности. Движение отрицательно заряженного электрона вокруг положительно заряженного ядра должно было быть равноускоренным /как всякое равномерное вращательное движение в классической механике/, следовательно, согласно уравнениям Максвелла, связывавшим излучение электромагнитных волн с ускоренным движением электростатических зарядов, электрон, находясь в атоме, должен был непрерывно излучать энергию в виде электромагнитных волн. Вместе с тем, спектры атомов, в том числе спектр атома водорода, изученный к тому времени наиболее тщательно, указывали, что атомы излучают в диапазоне строго определенных длин волн да и то не всегда. Если бы электроны в атомах подчинялись уравнениям Максвелла, то электрон, излучая электромагнитные волны, терял бы энергию и в конце концов упал бы на ядро /последнее, главным образом, и имеется в виду, когда речь идет о неустойчивости планетарной модели атома с точки зрения классической электродинамики/. Надо было что-то менять. Вероятно, физики отказались бы от планетарной модели, если бы еще в 1900 году Макс Планк не сформулировал квантовую теорию излучения, согласно которой энергия передается от излучателя к реципиенту не непрерывно, а отдельными порциями или квантами. К 1911 году, т.е. к моменту проведения Резерфордом своих знаменитых опытов, на основе которых была сформулирована планетарная модель атома, идея Планка уже принесла обильные плоды в физике, ибо на ее основании были объяснены такие, казалось бы, загадочные явления, как спектр абсолютно черного тела и фотоэффект. Ученик Резерфорда Нильс Бор, вдохновленный успехами квантовой теории, решил применить ее к планетарной модели атома. Так родилась квантовая механика. Квантовая механика по сути отказалась от всех основных принципов классической механики, сформулированной некогда Оремом, Галилеем, Декартом и Ньютоном. Прежде всего, квантовая механика упразднила принцип непрерывности, столь важный для новоевропейской науки и философии. Что касается последней, то для нее отказ от принципа непрерывности, рассматриваемого Лейбницем в качестве основополагающего, был так же губителен, как в свое время для схоластики отказ от концепций материи и формы. Поскольку диалектический материализм был всецело основан на принципах новоевропейской философии, в том числе на столь ценимом Гегелем принципе непрерывности, то квантовая теория в 1920-е годы привлекла к себе пристальное и, в целом, враждебное внимание советских философов. Сложилась ситуация, аналогичная той, что имела место с генетикой и теорией относительности. В журнале “Под знаменем марксизма” были опубликованы тексты выступлений М. Планка перед студентами Берлинского университета /1913 г./ и перед нобелевским комитетом /1920 г./, а затем дана оценка этих выступлений с марксистских позиций. Первая из опубликованных в журнале “Под знаменем марксизма” /№1, 1925/ речей М. Планка называлась “Новые пути физического познания”. В этой речи, которую Макс Планк произнес перед студентами Берлинского университета по случаю начала 1913/1914 учебного года /никто тогда не догадывался, что через год большинству этих студентов придется надеть военную форму/, оратор формулирует “великие общие физические принципы” и указывает, какие из них остались неизменными, а какие были поколеблены в свете открытий, имевших место на рубеже XIX - XX веков. К числу “непоколебленных” М. Планк отнес такие принципы, как 1) закон сохранения энергии; 2) закон сохранения импульса; 3) принцип наименьшего действия; 4) три начала термодинамики. К числу принципов, оказавшихся опровергнутыми, М. Планк отнес 1) неизменность химических атомов; 2) взаимную независимость пространства и времени; 3) непрерывность всех динамических процессов. По поводу первого из вышеперечисленных опровергнутых принципов Планк произнес многозначительную фразу: “Теперешние химические атомы далеко не атомы Демокрита”. По поводу третьего из опровергнутых принципов в речи Планка было сказано следующее: “Третье из упомянутых выше положений касается непрерывности всех динамических процессов, раньше неопровержимой предпосылки всех физических теорий, которая, опираясь на Аристотеля, сконцентрировалась в известной догме: “Natura non facit saltus” /природа не делает скачков/. Однако и в этой уважаемой с древности твердыне физической науки современное исследование пробило значительную брешь[...] Оказывается, природа в самом деле делает скачки и притом весьма странного сорта[...] Во всех случаях гипотеза квант приводит к представлению, что изменения происходят в природе не непрерывно, но как бы взрывами”. Ту же мысль Макс Планк подчеркнул в своей нобелевской речи “Возникновение и постепенное развитие теории квант”: “Появление кванта действия возвещало нечто совершенно новое, до того неслыханное, что, казалось, требовало преобразования самых основ нашего физического мышления, покоившегося со времен обоснования анализа бесконечно малых Ньютоном и Лейбницем на предположении о непрерывности всех причинных связей”. Разумеется, эти выступления М. Планка были прокомментированы в журнале “Под знаменем марксизма” с позиций диалектического материализма. Один из тогдашних марксистских идеологов, Аркадий Тимирязев, сын известного биолога К.А. Тимирязева, так отозвался о позиции, занятой М. Планком: “Руководствуясь диалектическим методом, мы сразу можем сказать, чего нам еще не хватает: если громадное число фактов заставило даже самых осторожных мыслителей из буржуазного мира отказаться от предрассудка, что “природа не делает скачков” и утверждать, что “природа делает скачки и притом весьма странного сорта”, то в мире атомов нам еще неизвестны те непрерывные процессы, те процессы подготовки, которые приводят к наблюдаемым уже нами скачкам, а в диалектическом процессе всякий скачок предполагает предшествующее непрерывное развитие”. Таким образом, А. Тимирязев предлагает ни больше ни меньше как снова ввести в физику принцип непрерывности, от которого создатели квантовой теории решительно отказались. Из реакции А. Тимирязева на выступление М. Планка видно, что марксисты настороженно восприняли появление квантовой теории и сразу поспешили указать, чего в ней не хватает, чтобы ее можно было привлечь в качестве еще одной иллюстрации “диалектики природы”. Но квантовая теория оказалась для марксистов твердым орешком. Отказ от принципа непрерывности был не единственным сюрпризом, который преподнесла квантовая теория марксистским философам. В 1927 году немецкий физик Вернер Гейзенберг сформулировал так называемый принцип неопределенности, указывавший на предел точности наших знаний о координате и скорости частицы и фактически приведший к отказу от понятия траектории. Примерно в то же время австрийский физик Э. Шредингер ввел понятие волновой функции, описывавшей положение квантового объекта в пространстве и во времени, заменившей, таким образом, прежнее понятие траектории. Когда, однако, попытались понять, что представляет собой волновая функция /каков ее физический смысл/, то выяснилось, что квадрат модуля волновой функции дает нам не что иное, как вероятность обнаружения частицы в данной точке пространства в данный момент времени. Одно из самых интересных следствий теории Шредингера заключалось в том, что с некоторой вероятностью квантовый объект мог находиться там, куда, с точки зрения классической механики, он вообще не мог попасть. Рассмотрим, например, преодоление частицей т.н. потенциального барьера. С точки зрения классической механики, частица не может преодолеть барьер, если ее исходная кинетическая энергия меньше, чем высота барьера. В квантовой механике преодоление потенциального барьера сделалось возможным для частиц с любой кинетической энергией /хотя, разумеется, чем ниже кинетическая энергия частицы, тем меньше вероятность преодоления ею потенциального барьера/. Основываясь на этих неожиданных следствиях из теории Шредингера, русский физик Георгий Гамов предложил теорию альфа-радиоактивности, в рамках которой последняя объяснялась как туннельный эффект, т.е. преодоление альфа-частицей потенциального барьера, мешающего ей покинуть ядро. С позиций классической физики альфа- радиоактивность, детально описанная Марией Кюри, казалась необъяснимой загадкой, так как исходная кинетическая энергия альфа-частиц, согласно расчетам, оказывалась значительно ниже высоты потенциального барьера, создаваемого ядерными силами. Самым, однако, поразительным в туннельном эффекте была его непредсказуемость. Альфа-частица оказывалась как бы пленницей, заточенной в глубокой яме и предпринимающей многократные попытки выбраться из нее. С точки зрения классической механики положение этой пленницы безнадежно. Но в квантовом /и в реальном/ мире все иначе: одна из приблизительно 1033 попыток выбраться из ямы приводит к успеху. Трудность, впрочем, состоит в том, что никогда нельзя заранее предсказать, какая именно попытка окажется успешной. Это наглядный пример непредсказуемости поведения квантовых объектов. Естественно, что это также противоречит новоевропейской философии, утверждающей, что каждая причина приводит к однозначному следствию. Надо сказать, что не одни лишь марксисты были ввергнуты в недоумение этим неожиданным следствием квантовой теории. Дело в том, что учение о жесткой связи между причиной и следствием / т.н. детерминизм/ наряду с принципом непрерывности составлял одну из догм новоевропейской философии уже со времен Спинозы /1632- 1677/. Ясно, что не только марксистам были дороги принципы новоевропейской философии. Например, А. Эйнштейн, никогда не сочувствовавший марксистам, зато большой поклонник философии Спинозы, был задет неожиданным для него выводом о непредсказуемости квантовых эффектов и вступил по этому поводу в длительную полемику с Н. Бором. В данном случае, однако, сама природа поддержала Н. Бора и других создателей квантовой механики в их споре с Эйнштейном: туннельный эффект, экспериментально наблюдаемый и не оставляющий никакой лазейки для предсказуемости, в точности описывался уравнением Шредингера. Впоследствии выяснилось, что туннельный эффект играет ключевую роль в ядерных реакциях, происходящих в недрах Солнца, так что этому чудесному эффекту мы в буквальном смысле слова обязаны своей жизнью. Эйнштейн, впрочем, оказался непоколебим в своей приверженности спинозианскому детерминизму, но физики, привыкшие следовать за природой, а не за философскими догмами, в данном случае Эйнштейна не поддержали. Зато позиция Эйнштейна неожиданно нашла союзников в лице марксистов, которые в непредсказуемости квантовых событий усмотрели зловещий для себя призрак “свободы воли”. В одной из статей, появившихся в журнале “Вопросы философии” в конце 1940-х годов, о квантовой механике было сказано: “Мнение на это счет /о непредсказуемости квантовых эффектов - И.Л./ Гейзенберга, Дирака, Бора и К0 общеизвестно: в микромире царит полный произвол в движении микрочастиц, и объяснить таковое можно лишь наличием “свободы воли” у электрона, а это уже явная чертовщина
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|