Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Совершенная дизъюнктивная нормальная форма. Совершенная конъюнктивная нормальная форма




 

Мы знаем, что одна и та же формула может быть представлена различными дизъюнктивными нормальными формами. Среди этих форм имеется совершенная дизъюнктивная нормальная форма, которая удовлетворяет условиям:

a) в ней нет двух одинаковых дизъюнкций;

b) ни одна дизъюнкция не содержит двух одинаковых конъюнкций;

c) ни одна дизъюнкция не содержит переменного высказывания вместе со своим отрицанием;

d) каждая дизъюнкция содержит в качестве дизъюнктивных членов все переменные, входящие в формулы.

Имеется два метода приведения формулы к дизъюнктивной нормальной форме.

Первый состоит в следующем: составляется истинностная таблица формулы и находятся все наборы значений переменных высказываний, при которых формула принимает значение «истина». Затем выписываются конъюнкции элементарных высказываний, отвечающие этим наборам, знаки отрицания расставляются над этими высказываниями, так, чтобы эти конъюнкции были истинными; наконец, конъюнкции соединяются знаком дизъюнкции.

Исходная формула будет равносильна выписанной дизъюнктивной нормальной форме.

В самом деле, при соблюдении требований расстановки знаков отрицания над переменными все выписанные конъюнкции будут истинными, а потому совершенная дизъюнктивная нормальная форма будет иметь тоже истинностное значение, что и исходная формула.

Например, чтобы привести формулу (р®q)Úq®rÚq к дизъюнктивной нормальной форме, составляем таблицу истинности этой формулы. Она имеет вид:

 

р q r р®q (р®q)Úq rÙ q (р®q)Úq®rÚq
0 0 0 1 1 0 0
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 1 0 0 0 1
1 1 0 1 1 0 0
1 1 1 1 1 1 1

 

По сформулированному алгоритму получаем:

(р®q)Úq®rÚq º (`рÙ qÙ r) Ú(р Ù`qÙ`r) Ú (р Ù`qÙr)Ú (р ÙqÙr).

Другой метод приведения формулы к совершенной дизъюнктивной нормальной форме заключается в следующем: приводим формулу к дизъюнктивной нормальной форме, а затем приписываем в каждом дизъюнктивном члене недостающие переменные согласно правилу (24).

Так, для формулы (р®q)Úq®rÚq имеем следующую цепочку преобразований _____________                                    _____ ____

(р®q)Úq®rÚq º(`рÚ qÚ q) Ú (rÙ q) º `р Úq Ù r Ù q º (`рÚ q)Ù(`qÚ`r).

Отрицаем последнее выражение:

______________    _           _ _

(`р Ú q)Ù(`qÙ`r) º(`рÙ`q) Ú (`qÙ`r) º(р Ù`q) Ú (qÙr).

Затем, пользуясь (24), имеем:

((р Ù`q) Ù (r Ú`r)) Ú ((рÚ` р) Ù(qÙr)) º (р Ù`q Ù r) Ú (р Ù`q Ù`r) Ú (`рÙ qÙ r) Ú(рÚ q Úr) º(`рÙ qÙ r) Ú (р Ù`qÙ`r) Ú(р Ù`qÙr) Ú (р ÙqÙr).

Аналогичным образом определяется совершенная конъюнктивная нормальная форма какой-то формулы. Она удовлетворяет условиям:

a) в ней нет двух одинаковых конъюнкций;

b) ни одна конъюнкция не содержит двух одинаковых дизъюнкций;

c) ни одна конъюнкция не содержит переменного высказывания вместе со свои отрицанием;

d) в каждой конъюнкции содержится в качестве дизъюнктивных членов все переменные входящие в формулу.

Правила приведения произвольной формулы к совершенной конъюнктивной нормальной форме аналогичны тем, которые были описаны для нахождения совершенной дизъюнктивной нормальной форме и выражаются в двойственных терминах. Так, для формулы (р®q)Úq®rÙq пользуясь ее таблицей истинности и правилом двойственности сразу можно записать совершенную конъюнктивную нормальную форму. Для этого выписываем дизъюнкции переменных, при которых формула истинна, затем расставляем знаки отрицания, чтобы при этих значениях выписанные дизъюнкции обращались в ложь. И наконец соединяем все дизъюнкции знаком конъюнкции. Для предыдущей формулы получаем:

(р®q)Úq®rÙqº(р Ú `qÚ` r) Ù(` р Úq Ú r) Ù (`рÚqÚ `r) Ù (`рÙ`qÙ `r)

Чтобы привести формулу к совершенной конъюнктивной нормальной форме по другому методу, надо привести ее к конъюнктивной нормальной форме, а затем восстановить в каждом конъюнктивном члене недостающие переменные, пользуясь правилом (23). Так для формулы (р®q)Úq®rÙq имеем следующую цепочку преобразований:

 

 (р®q)Úq® (rÙq) º(`р Ú qÚ q) Ú (rÙq) º (`рÙ`q) Ú(rÙq) º (рÙ`q) Ú(rÙq).

По закону двойственности имеем:

_

(рÙ`q) Ú(rÙq) º (`рÚ`q) Ù (`r Ú`q) º (`рÚq) Ù (`r Ú`q).

В полученной конъюнктивной нормальной форме восстанавливаем недостающие переменные, пользуясь (23).

(`рÚq) Ù (`r Ú`q) º((` р Úq) Ú (rÙ`r)) Ù ((рÚ` р) Ú (`r Ú`q)) º (`рÚ qÚ r) Ù (` рÚ q Ú `r) Ù(рÚ`qÚ`r) Ù (`рÙ`q Ù` r).

Во многих случаях представление формулы в совершенных нормальных формах является способом систематического ее упрощения. Однако этот метод не является наиболее коротким и не приводит к простейшему выражению.

 


Литература

 

1. Логическое суждение. Руфулаев О.Н. К. – 2005 г.

2. Логика – исскуство мышления. Тимирязев А.К.– К. 2000 г.

3. Философия и жизнь – журнал- К. 2004 г.

4. История логики и мышления – Касинов В.И. 1999.

5. Логика и человек – М. 2000.

6. Философия жизни. Матюшенко В.М. – Москва – 2003 г.

7. Философия бытия. Марикова А.В. – К. 2000 г.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...