Основные теоретические положения.
ВВЕДЕНИЕ Экспериментальные исследования подразделяются на натурные и модельные. Натурные исследования проводятся на действующем объекте и позволяют получать наиболее полные и надежные характеристики объекта. Модельные исследования проводятся на специально создаваемых стендах – экспериментальных установках, и позволяют детально изучить отдельные процессы, протекающие в реальных объектах. Исследования на моделях проводят с учетом правил моделирования /подобия/. При выполнении этих правил осуществляется физическое моделирование. Процессы различной физической природы, которые описываются математически тождественными уравнениями и условиями однозначности, называются аналогичными. Такая аналогия существует, например, между явлениями теплопроводности и диффузии. К исследованиям по методу аналогий прибегают тогда, когда удается подобрать процесс, который существенно легче осуществить экспериментально, чем натурный, и в котором измерения проводятся с большей точностью.
ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ
Процесс теплопроводности в области GT (x,y,z) имитируется прохождением электрического тока в геометрической подобной электропроводящей области Gэ (x,y,z). На границах области Gэ (x,y,z) организуется подвод электрического тока I или задаются электрические потенциалы u с соблюдением подобия в краевых условиях модели и натурного образца. Явления теплопроводности и электропроводности описываются уравнениями: (1) где dQ и dI – элементарные потоки теплоты и электрического тока, прошедшие через площадки dFT и dFэ в направлении нормалей nT и nэ; Т и u – температура и электрический потенциал; l и s - коэффициенты теплопроводности и электропроводности, индексы «Т» и «Э» отмечают величины, относящиеся к тепловым и электрическим явлениям.
Применение указанных уравнений к случаю двумерной задачи при стационарных условиях протекания процессов и независимости физических свойств l, s от температуры приводит к уравнениям Лапласа (2) Пусть граничные условия (третьего ряда) задаются в виде: - grad T = - grad u = (3) Введем безразмерные величины: XТ = xТ /lот, YT = yT/lот, LT = lT/ lот, q = DT/DT0, Где величины с индексом о являются характерными для данного процесса. Такие же соотношения вводятся и для величин, относящихся к электрическому явлению. После постановки этих соотношений уравнения (2) и граничные условия (3) принимают безразмерный вид: , , (4) - grad q = q/LT, - grad u = u/Lэ. (5) Тождественность приведенных уравнений имеет место при любом выборе масштабов для температуры и электрического потенциала. Решения дифференциальных уравнений теплопроводности и электропроводности (4) тождественно одинаковы при условии LT = Lэ. Из этого условия выходит, что qi = ui, следовательно: (6) т.е. распределение температуры и электрического потенциала подобны и имеет место аналогия. При исследовании нестационарных процессов для одномерных областей исходные уравнения имеют вид: , (7) где Rэ и Сэ электрические сопротивление и емкость на единицу длины. Из сравнения этих уравнений следует, что аналогия устанавливается, если выполняется условие: Изменение теплового потока пропорционально теплоемкости системы и изменению температуры Следовательно, в модели теплоемкости могут быть воспроизведены соответствующими электрическими емкостями. При описании электрических моделей, имитирующих процессы теплопроводности, применяются два способа. По первому способу электрические модели повторяют геометрию тепловой системы и изготовляются из материала с непрерывной электропроводностью.
Наряду с такими моделями применяются электрические модели с электрическими цепями (сопротивлениями, емкостями), которые используются при описании наиболее сложных явлений, как правило, нестационарных. Если область GT(х,у) выполнена из материалов с различными значениями l, то область GT(х,у) изготавливают составной. Части областей с различными l моделируют либо несколькими слоями из одного и того же материала, либо слоями из различных материалов с соблюдением пропорциональности между l и s. Термические сопротивления теплоотдачи (внешние) на поверхностях исследуемой системы учитываются путем добавления к электрической модели дополнительных слоев или сопротивлений RЭ. НАХОЖДЕНИЕ ДВУМЕРНОГО СТАЦИОНАРНОГО ПОЛЯ ТЕМПЕРАТУР В ПОПЕРЕЧНОМ СЕЧЕНИИ ОБРАЗЦА. Пусть на наружном контуре образца (рис.1) задано распределение температуры Т (S ), на внутреннем контуре происходит конвективный теплообмен с теплоносителем со средней температурой Т+. Задано распределение местных коэффициентов теплоотдачи . Необходимо определить температурное поле внутри образца Т (х,у). Рис. 1. Электромоделирование поля температуры а) двумерная тепловая область с симметрией; б) электропроводная область из листового материала Из листового проводящего материала вырезается область Gэ(х,у) геометрически подобная область GT(х,у). Масштаб выбирается из соображения удобства. Наружный и внутренний контуры модели разбиваются на участки S и S , на которые накладываются электрические шины. При сложном изменении граничных условий производится разбиение на мелкие участки, а на участках с постоянными граничными условиями накладываются шины большего размера. На участках наружного контура D S задаются потенциалы, соответствующие температурам Т(S ). Пересчет температур на потенциалы производится по формуле: , (8) где Тmax и umax – максимальная из температур Т(S ) и соответствующая ей потенциал в сходственном участке, uf – потенциал, соответствующий температуре Тf. К участкам внутреннего контура присоединяются сопротивления Rэ, значения которых определяются из соотношения: , (9) где и характерные (обычно максимальные) размеры областей GT(x,y) и Gэ(x,y).
Формула (9) находится из равенства чисел Био для тепло- и электропроводных областей. Безразмерные потенциалы U = (u-ut)/(umax-ut) равны безразмерным температурам Q = (T-Tf)/(Tmax-Tf), в сходственных точках Х = хТ/LT = xэ/LТ и Y = YT/ LT = Yэ/ Lэ. Из этих соотношений можно найти искомую температуру: (10)
При симметрии температурного поля моделируют часть области GT(x,y), отделяемой от остальной по линиям симметрии (рис.1). Поверхности по линиям симметрии являются адиабатными. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ Экспериментальная установка состоит из исследуемой модели 1 (в данном случае приведена модель резца), изготовленной из электропроводного материала; координатного устройства 2 с зондом 3 для снятия потенциалов различных точек модели, двухкоординатного потенциометра 4, блока сопротивлений 5 и источника питания 6. Напряжение от источника питания 6 подается в блок сопротивлений 5. Подвод и отвод теплоты определенной величины к разным участкам образца моделируется подключением шинам к соответствующим участкам напряжения источника питания положительной или отрицательной полярности через определенные сопротивления блока 5. Распределение потенциалов на модели 1 снимается зондом 3 и фиксируется потенциометром 4.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|