Серийно выпускаемые анализаторы удельной поверхности, работающие по методу тепловой десорбции (БЭТ)
Прибор СОРБИ-М (табл.10, рис. 38) предназначен для измерения удельной поверхности дисперсных и пористых материалов путем сравнения объемов газа-адсорбата, сорбируемого исследуемым образцом и стандартным образцом материала с известной удельной поверхностью. В качестве газа-адсорбата в данной модификации используется азот. Измерение удельной поверхности проводится по 4-х точечному методу БЭТ. Для измерения количества адсорбированного газа используется метод тепловой десорбции. В этом случае через исследуемый образец при температуре кипения жидкого азота пропускают стационарный поток смеси газа-носителя (гелия) и газа-адсорбата (азота) заданного состава. Газовую смесь пропускают до установления равновесия между концентрациями адсорбата в газовой и адсорбционной фазах. Затем образец нагревают от температуры кипения жидкого азота до температуры полной десорбции газа-адсорбата с поверхности образца.
Рис. 38. Общий вид анализатора
1 ̶ линзовая наклейка; 2 ̶ узел забора газа; 3 ̶ панель индикации; 4 ̶ соединитель газовый (выход газовой смеси); 5 ̶ маркировочная табличка; 6 ̶ штуцер и трубка для выливки жидкого азота. Изменение концентрации газа-адсорбата в потоке газовой смеси в ходе процессов «адсорбции-десорбции» регистрируется с помощью детектора состава газа (детектора по теплопроводности). Выходным рабочим сигналом детектора является десорбционный пик газа-адсорбата. Площадь этого пика прямо пропорциональна объёму десорбированного газа. По результатам измерений объёмов газа, сорбируемого на испытуемом образце при четырёх значениях парциального давления, с помощью уравнения БЭТ рассчитывается значение удельной поверхности. Для градуировки прибора используется стандартный образец с аттестованной удельной поверхностью. Как следует из таблицы 10, по сравнению со статическими методами метод тепловой десорбции (БЭТ) имеет ряд существенных преимуществ, но в то же время не лишен недостатков, главными из которых являются длительность анализа и обязательное наличие криостатов. Кроме того, это и необходимость тренировки образца, которая предусматривает выдержку образца в потоке газа-носителя при значительных температурах (до+200 °С). Многие образцы при таких температурах разлагаются. Альтернативой для экспресс-анализа в промышленных условиях могут служить анализаторы, работающие на основе высокотемпературного метода тепловой десорбции (ВМТД). Суть метода ВМТД заключается в определении объема адсорбата, адсорбированного на поверхности анализируемой пробы из потока парогазовой смеси при плюсовой температуре, затем десорбированного из неё при повышении температуры до 100 ºС, последующем интегрировании сигнала и расчёте удельной поверхности по программе, составленной для контроллера [ 12].
Сорбтометр имеет блочную конструкцию (рис. 37) и состоит из: блока подготовки воздуха (БПВ); блока адсорбера (БА); блока детектора (БД); блока измерительно-преобразующего (БИП); программно-логического контроллера (ПЛК); термостата детектора; термостата адсорбера; панели оператора (ИП); ноутбука с ПО. Рис 39. Структурная схема анализатора удельной поверхности (ВМТД)
Контроль процесса определения удельной поверхности производится путем подключения прибора к ПК. Пользовательский интерфейс выполнен в SCADA- Trace Mode 6. В данную систему визуализации вынесены величины температуры детектора и адсорбера, контроль объёма воздуха на выходе, время анализа, тренд адсорбции, что позволяет управлять процессом в автоматическом режиме и представлять процессы измерений в графическом виде в реальном масштабе времени.
Читайте также: A) Лица, старше 14 лет, работающие на момент обследования не менее определенного краткосрочного периода. Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|