Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

c241 Кластер П (Правило Ленца, закон Фарадея) – 19 заданий




 

1. [Уд1] (ВО1) На рисунке показан длинный проводник с током, в одной плоскости с которым находится небольшая проводящая рамка.

При выключении в проводнике тока заданного направления, в рамке индукционный ток

1) возникнет в направлении 1 – 2 – 3 – 4

2) возникнет в направлении 4 – 3 – 2 – 1

3) не возникает

:1

 

2. [Уд1] (ВО1) На рисунке показан длинный проводник, в одной плоскости с которым находится небольшая проводящая рамка.

При включении в проводнике тока заданного направления, в рамке индукционный ток

1) возникнет в направлении 1 – 2 – 3 – 4

2) возникнет в направлении 4 – 3 – 2 – 1

3) не возникает

:2

3. [Уд1] (ВО1) По параллельным металлическим проводникам, расположенным в однородном магнитном поле, с постоянной скоростью перемещается перемычка.

Зависимости индукционного тока, возникающего в цепи, от времени соответствует график

 

 

1) 1

2) 2

3) 3

4) 4

:1

4. [Уд1] (ВО1) На рисунке представлена зависимость магнитного потока, пронизывающего некоторый контур, от времени. График зависимости ЭДС индукции в контуре от времени представлен на рисунке

1) 1

2) 2

3) 3

:2

 

5. [Уд1] (ВО1) На рисунке представлена зависимость магнитного потока, пронизывающего некоторый замкнутый контур, от времени. ЭДС индукции в контуре отрицательна и по величине минимальна на интервале

1) С

2) D

3) B

4) E

5) А

:5

6. [Уд1] (ВО1) На рисунке представлена зависимость магнитного потока, пронизывающего некоторый замкнутый контур, от времени. ЭДС индукции в контуре отрицательна и по величине максимальна на интервале

1) E

2) D

3) А

4) B

5) С

:2

7. [Уд1] (ВО1) Контур площадью S = 10-2 м2 расположен перпендикулярно к линиям магнитной индукции. Магнитная индукция изменяется по закону В = (2 + 5 t 2)·10-2, Тл. Модуль ЭДС индукции, возникающей в контуре, изменяется по закону

1) e i = 10-3 t

2) e i = (2 +5 t 2)·10-4

3) e i = 10-2 t

:1

 

8. [Уд1] (ВОМ) Две катушки намотаны на общий железный сердечник и изолированы друг от друга. На рисунке представлен график зависимости силы тока от времени в первой катушке. В каком интервале времени во второй катушке возникнет ЭДС индукции?

 

1) Только в интервале

2) Только в интервале

3) Только в интервале

4) В интервалах и

:4

9. [Уд1] (ВО1) Плоский проволочный виток площади S расположен в однородном магнитном поле так, что нормаль к витку противоположна направлению вектора магнитной индукции этого поля. Чему равно значение ЭДС ei индукции в момент времени t = t 1, если модуль В магнитной индукции изменяется со временем t по закону В = a + bt2, где а и b - положительные константы?

1) ei = -2 Sbt1.

2) ei = - S (a + b ).

3) ei = 2 Sbt1.

4) ei = 2 Sb.

:3

 

10. [Уд1] (ВО1) На рисунке показана зависимость силы тока от времени в электрической цепи с индуктивностью L = 1 мГн. Модуль среднего значения ЭДС самоиндукции в интервале от 15 до 20 с равен … мкВ.

1) 0

2) 10

3) 20

4) 4

:4

 

11. [Уд1] (ВО1) На рисунке показана зависимость силы тока от времени в электрической цепи с индуктивностью L = 1 мГн. Модуль среднего значения ЭДС самоиндукции в интервале от 5 до 10 с равен …… мкВ.

1) 0

2) 10

3) 20

4) 2

:4

 

12. [Уд1] (ВО1) Сила тока, протекающего в катушке, изменяется по закону I = 1 – 0,2 t. Если при этом на концах катушки наводится ЭДС самоиндукции = 2,0·10-2 В, то индуктивность катушки равна …… Гн.

1) 0,1

2) 0,4

3) 4

4) 1

:1

 

13. [Уд1] (ВО1) Через контур, индуктивность которого L = 0,02 Гн, течет ток, изменяющийся по закону I = 0,5sin500 t. Амплитудное значение ЭДС самоиндукции, возникающей в контуре, равно … В.

1) 0,01

2) 0,5

3) 500

4) 5

:4

14. [Уд1] (ВО1) За время Δ t = 0,5 с на концах катушки наводится ЭДС самоиндукции Eis = 25 В. Если при этом сила тока в цепи изменилась от I 1 = 10 A до I 2 = 5 A, то индуктивность катушки равна … Гн.

1) 2,5

2) 0,25

3) 0,025

4) 25

:1

 

15. [Уд1] (ВО1) За время Δ t = 0,5 с на концах катушки наводится ЭДС самоиндукции Eis = 25 В. Если при этом сила тока в цепи изменилась от I 1 = 20 A до I 2 = 10 A, то индуктивность катушки равна … Гн.

1) 2,5

2) 0,25

3) 1,25

4) 25

:3

 

16. [Уд1] (ВО1) Направления индукционного тока в контуре и магнитного поля (от нас) указывают, что для величины магнитной индукции справедливо соотношение

1)

2)

3)

4) Знак неопределим

:2

17. [Уд1] (ВО1) Направления индукционного тока в контуре и магнитного поля (к нам) указывают, что для величины магнитной индукции справедливо соотношение

1)

2)

3)

4) Знак неопределим

:3

 

18.[Уд1] (О) При движении рамок в однородном магнитном поле в направлениях, указанных стрелками, ЭДС индукции возникает в случае под номером

:3

19. [Уд1] (О) По параллельным металлическим проводникам, расположенным в однородном магнитном поле, с постоянной скоростью перемещается перемычка. Зависимость Ei - ЭДС индукции, возникающей в цепи, правильно представлена на рисунке под номером

 

:3

 

 

Дисциплина: Физика

Тема: 250 Электромагнитные колебания и волны

V251П Электромагнитные колебания.

S251 П электромагнитные колебания – 23 задания

1. [Уд] (ВО1) В колебательном контуре зависимость заряда на пластинах конденсатора от времени описывается дифференциальным уравнением вида . Эти колебания называются

1) незатухающими

2) затухающими

3) вынужденными

4) гармоническими

:2

2. [Уд] (ВО1) В колебательном контуре зависимость заряда на пластинах конденсатора от времени описывается дифференциальным уравнением вида . Эти колебания называются

1) незатухающими

2) затухающими

3) вынужденными

4) гармоническими

:1

3. [Уд] (ВО1) В колебательном контуре зависимость заряда на пластинах конденсатора от времени описывается дифференциальным уравнением вида . Эти колебания называются

1) незатухающими

2) затухающими

3) вынужденными

4) гармоническими

:3

4. [Уд] (ВО1). Если частота колебаний в контуре возросла в 3 раза, а заряд конденсатора и индуктивность катушки не менялись, то энергия магнитного поля в катушке … раз(а).

1) уменьшилась в 3

2) увеличилась в 3

3) уменьшилась в 9

4) увеличилась в 9

:4


5. [Уд] (ВО1) Максимальная энергия электрического колебательного контура 4,5 Дж. При циклической частоте свободных колебаний в контуре, равной 1·104с-1, и емкости конденсатора 4 мкФ максимальный ток через катушку индуктивности равен

1) 6 мкА

2) 6 мА

3) 6 А

4) 60 А

:4

6. [Уд] (ВО1) В колебательном контуре в начальный момент времени напряжение на конденсаторе максимально. Напряжение на конденсаторе станет равным нулю через долю периода электромагнитных колебаний, равную

1)

2)

3)

4) T

:1

7. [Уд] (ВО1) В колебательном контуре в начальный момент времени напряжение на конденсаторе максимально. Сила тока станет равной нулю через долю периода электромагнитных колебаний, равную

1)

2)

3)

4) T

:2

8. [Уд] (ВО1) Сила тока в колебательном контуре изменяется по закону ,мА. Амплитуда колебаний заряда на обкладках конденсатора равна … мкКл.

1) 2

2) 6

3) 12

4) 30

:4

9. [Уд] (ВО1) Если в колебательном контуре увеличить емкость конденсатора в 2 раза и заряд на нем увеличить в 2 раза, то амплитуда колебаний тока в контуре … раз(а).

1) увеличится в 2

2) увеличится в

3) уменьшится в

4) уменьшится в 2

:2

10. [Уд] (ВО1) Если в колебательном контуре уменьшить емкость конденсатора в 2 раза, то, при одинаковом заряде конденсатора, максимальная энергия магнитного поля в катушке индуктивности … раза.

1) увеличится в 2

2) увеличится в

3) уменьшится в

4) уменьшится в 2

:1

11. [Уд] (ВО1) Если частота колебаний в контуре возросла в 2 раза, а заряд конденсатора и индуктивность катушки не менялись, то энергия магнитного поля в катушке … раза.

1) уменьшилась в 2

2) увеличилась в 2

3) уменьшилась в 4

4) увеличилась в 4

:4

12. [Уд] (ВО1) Время релаксации затухающих электромагнитных колебаний наибольшее в случае

1) , мкКл

2) , мкКл

3) , В

4) , В

:3

13. [Уд] (ВО1) Ниже приведены уравнения затухающих электромагнитных колебаний. Логарифмический декремент затухания наибольший в случае

1) , В

2) , мкКл

3) , мкКл

4) , В

:1

14. [Уд] (ВО1) Уменьшение амплитуды колебаний в системе с затуханием характеризуется временем релаксации. Если при неизменном омическом сопротивлении в колебательном контуре увеличить в 2 раза индуктивность катушки, то время релаксации … раза.

1) уменьшится в 4

2) увеличится в 2

3) увеличится в 4

4) уменьшится в 2

:2

15. [Уд] (ВО1) Уменьшение амплитуды колебаний в системе с затуханием характеризуется временем релаксации. Если при неизменной индуктивности в колебательном контуре увеличить омическое сопротивление в 2 раза катушки, то время релаксации … раза.

1) уменьшится в 4

2) увеличится в 2

3) увеличится в 4

4) уменьшится в 2

:4

16. [Уд] (ВО1) Ниже приведены уравнения собственных незатухающих электромагнитных колебаний в четырех контурах с одинаковой емкостью. Индуктивность L контура наименьшая в случае

1) q = 10-6cos(4p t + ), Кл

2) U = 3cos2p t, В

3) q = 10-8cos(p t + ), Кл

4) I = –2×sin2p t, А

:1

17. [Уд] (ВО1) Ниже приведены уравнения собственных незатухающих электромагнитных колебаний в четырех контурах с одинаковой индуктивностью. Емкость C контура наибольшая в случае

1) q = 10-6cos(4p t + ), Кл

2) U = 3cos2p t, В

3) q = 10-8cos(p t + ), Кл

4) I = –2×sin2p t, А

:3

18. [Уд] (ВО1) Уравнение изменения тока со временем в колебательном контуре имеет вид А. Индуктивность контура L =1 Гн. Емкость контура C равна … нФ.

1) 100

2) 314

3) 400

4) 634

:4

19. [Уд] (ВО1) Уравнение изменения тока со временем в колебательном контуре имеет вид А. Если индуктивность контура составляет L =1 Гн, то максимальное напряжение между обкладками равно … В.

1) 18

2) 25

3) 47

4) 63

:4

20. [Уд] (ВО1) Уравнение изменения тока со временем в колебательном контуре имеет вид А. Индуктивность контура L =1 Гн. Максимальная энергия электрического поля составляет … мДж.

1) 1,25

2) 2,50

3) 12,5

4) 25

:1

21. [Уд] (ВО1) В идеальном колебательном контуре происходят свободные незатухающ колебания. Отношение энергии магнитного поля колебательного контура к энергии его электрического поля для момента времени t = T /8 равно

1) 0

2) 0,5

3) 1

4) 1,73

:3

22. [Уд] (ВО1) В момент времени конденсатор идеального электрического колебательного контура заряжают до амплитудного значения , после чего контур предоставляют самому себе. Если период колебаний в контуре мкс, то минимальное время после начала колебаний, через которое энергия электрического поля конденсатора уменьшится на , составляет … мкс.

1) 0

2) 0,5

3) 1

4) 3

:3

23. [Уд] (ВО1) В момент времени конденсатор идеального электрического колебательного контура заряжают до амплитудного значения , после чего контур предоставляют самому себе. Если период колебаний в контуре мкс, то минимальное время после начала колебаний, через которое энергия электрического поля конденсатора уменьшится на , составляет … мкс.

1) 0,2

2) 0,5

3) 2,3

4) 7,2

:2

 


С252 П электромагнитные колебания (Работа с графиками) – 12 заданий

 

1. [Уд] (ВО1) На рисунке изображен график зависимости напряжения U на конденсаторе в идеальном электрическом контуре от времени t. Индуктивность контура L = 1,0 Гн. Максимальное значение электрической энергии колебательного контура равно … мкДж.

1) 16 мкДж

2) 81 мкДж

3) 100 мкДж

4) 110 мкДж

:2

2. [Уд] (ВО1) На рисунке изображен график зависимости напряжения U на конденсаторе в идеальном электрическом контуре от времени t. Индуктивность контура L = 1,0 Гн. Максимальное значение магнитной энергии колебательного контура равно

1) 110 мкДж

2) 105 мкДж

3) 90 мкДж

4) 81 мкДж

:4

 

3. [Уд] (ВО1) На рисунке приведен график зависимости заряда q от времени t в идеальном закрытом колебательном контуре. График зависимости напряжения между пластинами конденсатора U от времени t приведен под номером …

1) 1

2) 2

3) 3

4) 4

:3


4. [Уд] (ВО1) На рисунке приведен график зависимости заряда q от времени t в идеальном колебательном контуре. Зависимость W эл энергии магнитного поля в катушке индуктивности от времени t показана правильно на графике

1) 1

2) 2

3) 3

4) 4

:4

5. [Уд] (ВО1) На рисунке приведен график зависимости заряда q от времени t в идеальном колебательном контуре. Циклическая частота колебаний энергии электрического поля конденсатора равна … рад/с.

1) 0,102·106

2) 0,435·106

3) 0,785·106

4) 1.570·106

:4

6. [Уд] (ВО1) На рисунке приведен график зависимости заряда q от времени t в идеальном колебательном контуре. Амплитудное значение силы тока в контуре равно … А.

1) 6102

2) 4356

3) 2356

4) 1570

:3

7. [Уд] (ВО1) На рисунке приведен график зависимости заряда q от времени t в идеальном колебательном контуре. Частота на которую настроен контур равна … кГц.

1) 24

2) 240

3) 125

4) 2400

:3

8. [Уд] (ВО1) На рисунке приведен график зависимости силы тока i от времени t в идеальном закрытом колебательном контуре. Процесс изменения электрической энергии в контуре показан правильно на графике

1) 1

2) 2

3) 3

4) 4

:3

qm
t
 
 
 
 
9. [Уд] (О) На рисунке представлена зависимость амплитуды колебаний на пластинах конденсатора в различных колебательных контурах от времени:

Если активное сопротивление контура в них одинаково, то максимальная индуктивность соответствует зависимости, обозначенной кривой …

:3

W
t
 
 
 
 
 
10. [Уд] (О) Зависимость полной энергии электрического и магнитного поля в различных колебательных контурах от времени представлена на рисунке. Если индуктивность контура в них одинакова, то максимальное сопротивление контура в них соответствует зависимости, обозначенной кривой …

:1

W
t
 
 
 
 
 
11. [Уд] (О) Зависимость полной энергии электрического и магнитного поля в различных колебательных контурах от времени представлена на рисунке. Если индуктивность в них одинакова, то максимальное активное сопротивление в них соответствует зависимости, обозначенной кривой …

:3

12. [Уд] (ВО1)

W
t
а
б
в
В колебательном контуре совершаются затухающие электромагнитные колебания, полная энергия может быть представлена графиком…

1) а

2) б

3) в

4) г

:3

 

 

Дисциплина: Физика

V254 – П Электромагнитные волны.

S254 – П Электромагнитные волны. – 9 заданий

 

1. [Уд] (ВО1) Радиопередатчик излучает ЭМВ с длиной .Чтобы контур радиопередатчика излучал ЭМВ с длиной /2, электроемкость конденсатора в контуре C контура необходимо … раза.

1) уменьшить в 4

2) увеличить в 4

3) увеличить в 2

4) уменьшить в 2

:1

2. [Уд] (ВО1) Длина излучаемых антенной радиостанции электромагнитных волн равна 15 м. Радиостанция работает на частоте … МГц.

1) 10

2) 15

3) 20

4) 25

:3

3. [Уд] (ВО1) Абсолютный показатель преломления данной среды равен 1,33. Электромагнитная волна распространяется в некоторой среде со скоростью … м/c.

1) 2,25·108

2) 2,5·108

3) 2,75·108

4) 3,0·108

:1

4. [Уд] (ВО1) В электромагнитной волне, распространяющейся в вакууме со скоростью , происходят колебания векторов напряженности электрического поля и индукции магнитного поля . При этих колебаниях векторы , , имеют взаимную ориентацию

1) , ,

2) , ,

3) , ,

4) , ,

:4

5. [Уд] (ВО1) При переходе электромагнитной волны из одной среды в другую изменяются … волны.

1) частота и скорость распространения

2) период и амплитуда

3) скорость и длина

4) частота и длина

:3

6. [Уд] (ВО1) В вакууме распространяется плоская электромагнитная волна, амплитуда электрической составляющей которой равна Е m = 50 мВ/м. Максимальное значение напряженности магнитного поля … мкА/м.

1) 103,5

2) 132,7

3) 35,8

4) 78,9

:2

7. [Уд] (ВО1) Радиостанция работает на частоте 500 кГц. В некоторый момент времени в точке А электрическое поле электромагнитной волны равно нулю, ближайшая к ней точка В, в которой величина магнитного поля волны принимает максимальное значение, находится на расстоянии … м.

1) 0

2) 150

3) 300

4) 600

:2

8. [Уд] (ВО1) Длина электромагнитной волны, распространяющейся в некоторой среде составляет l = 4 м. Магнитная и диэлектрическая проницаемости среды соответственно равны: μ = 1, ε = 9. Период колебаний ЭМВ равен … c.

1) 8·10-8

2) 6·10-8

3) 4·10-8

4) 2·10-8

:3

9. [Уд] (ВО1) При уменьшении в 2 раза амплитуды колебаний векторов напряженности электрического и магнитного полей плотность потока энергии

1) уменьшится в 2 раза

2) останется неизменной

3) уменьшится в 4 раза

3) увеличится в 4 раза

:3

 

 

C254 – П Электромагнитные волны (графики). – 5 заданий

 

1. [Уд] (ВО1) В вакууме в положительном направлении оси 0 у распространяется плоская электромагнитная волна. На рисунке приведен график зависимости проекции Вх на ось 0 х индукции магнитного поля волны от координаты у в произвольный момент времени t. Период Т волны равен … c.

1) 8·10-8

2) 6·10-8

3) 4·10-8

4) 2·10-8

:4

2. [Уд] (ВО1) На рисунке показана ориентация векторов напряженности электрического () и магнитного () полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении

1) 3

2) 2

3) 1

4) 4

:4

3. [Уд] (ВО1) На рисунке показана ориентация векторов напряженности электрического () и магнитного () полей в электромагнитной волне. Вектор плотности потока энергии электромагнитного поля ориентирован в направлении

1) 2

2) 4

3) 1

4) 3

:1

4. [Уд] (ВО1) На рисунке представлена мгновенная фотография электрической составляющей электромагнитной волны, переходящей из среды 1 в среду 2 перпендикулярно границе раздела сред АВ. Отношение скорости света в среде 2 к его скорости в среде 1 равно

1) 0,67

2) 1,5

3) 0,84

4) 1,75

:1

 

5. [Уд] (ВО1) На рисунке представлена мгновенная фотография электрической составляющей электромагнитной волны, переходящей из среды 1 в среду 2 перпендикулярно границе раздела сред АВ. Относительный показатель преломления среды 2 относительно среды 1 равен

1) 1,75

2) 0,67

3) 1,00

4) 1,5

:4

 

Дисциплина: Физика

Индекс темы 310 «Волновая оптика»

Вариация v314 Интерференция и дифракция световых волн

Контроль: П - промежуточный

П С314 Кластер (Интерференция света) 19 заданий

1. [Уд] (ВО1) Оптическая разность хода двух волн D L 12, прошедших расстояние r 1 в среде с показателем преломления n 1, и расстояние r 2 в среде с показателем преломления n 2, равна

1) r 1 r 2

2) (r 1r 2) (n 1n 2)

3)

4) r 1 n 1r 2 n 2

:4

2. [Уд] (ВО1) Две когерентные световые волны, приходящие в некоторую точку, максимально усиливают друг друга, если для разности фаз выполняется следующее условие

1)

2)

3)

4)

:3

3. [Уд] (ВО1) Две когерентные световые волны, приходящие в некоторую точку, максимально ослабляют друг друга, если для разности фаз выполняется следующее условие

1)

2)

3)

4)

:1

4. [Уд] (ВО1) Условие интерференционного максимума можно записать следующим образом –

1)

2) d

3)

4)

:3

5. [Уд] (ВО1) Условие интерференционного минимума можно записать следующим образом

1)

2) d

3)

4)

:4

6. [Уд] (ВО1) Для наблюдения линий равного наклона в монохроматическом свете должна быть переменной величиной

1) толщина пленки

2) показатель преломления пленки

3) угол падения световых лучей

4) интенсивность падающего света

:3

7. [Уд] (ВО1) На рисунке приведена схема установки для наблюдения колец Ньютона (линза большого радиуса кривизны и стеклянная пластинка расположены в воздухе). Кольца Ньютона в отраженном свете можно наблюдать при интерференции световых волн, номера которых

1) 1 и 2

2) 2 и 3

3) 3 и 4

4) 1 и 4

:2

8. [Уд] (ВО1) Оптическая разность хода двух волн, прошедших одинаковое расстояние L, если одна распространялась в вакууме, а другая – в среде с показателем преломления n, равна

1) 0

2) L (n -1)

3) Ln

4) l

:2

9. [Уд] (ВО1) Световая волна из воздуха падает на плоскопараллельную стеклянную пластину толщиной d и показателем преломления n 1, лежащую на столе с показателем преломления n 2 (см. рисунок). Если n 1< n 2, то оптическая разность хода D21 волн 2 и 1, отраженных от нижней и верхней граней пластинки определяется выражением

1) D21 = 2 d (n 2n 1)

2) D21 = 2 dn 1 + l/2

3) D21 = dn 1

4) D21 = 2 dn 1

:4

10. [Уд] (ВО1) В данную точку пространства пришли две световые волны с одинаковым направлением колебаний вектора , периодами Т 1 и Т 2 и начальными фазами φ1 и φ2. Интерференция наблюдается в случае

1) Т 1 = 2 с; Т 2 = 2с; φ1 – φ2 = const

2) T 1 = 2 c; Т 2 = 4 с;φ1 – φ2 = const

3) Т 1 = 2 с; Т 2 = 2с; φ1 – φ2 const

4) T 1 = 2 c; Т 2 = 4 с; φ1 – φ2 const

:1

11. [Уд] (ВО1) Тонкая пленка, освещенная белым светом, вследствие явления интерференции в отраженном свете имеет зеленый цвет. При уменьшении толщины пленки ее цвет

1) не изменится

2) станет красным

3) станет синим

:3

12. [Уд] (ВО1) Интерферируют две одинаково поляризованных волны с одинаковыми интенсивностями I и разностью фаз Dj = 0. Результирующая интенсивность будет равна

1) 7 I

2) 4 I

3) 1,3 I

4) 2 I

:2

13. [Уд] (ВО1) Интерферируют две одинаково поляризованных волны с одинаковыми интенсивностями I и разностью фаз Dj = p. Результирующая интенсивность будет равна

1) 7 I

2) 4 I

3) 0

4) 2 I

:3

14. [Уд] (ВО1) На плоскопараллельную стеклянную пластинку падает световая волна (см. рисунок). Волны 1 и 2, отраженные от верхней и нижней граней пластинки, интерферируют. Для показателей преломления сред выполняется соотношение: n 1 < n 2 < n 3. В этом случае оптическая разность хода D21 волн 1 и 2 равна

1) AD · n 1

2) (AB + BCn 2

3) (AB + BCn 2 AD · n 1

4) (AB + BCn 2 AD · n 1 + λ/2

:3

15. [Уд] (ВО1) На пути луча, идущего в воздухе, поставили стеклянную пластинку толщиной d = 3 мм так, что луч падает на пластинку нормально. Показатель преломления стекла n = 1,5. Оптическая длина пути луча при этом…

1) уменьшилась на 2 мм

2) увеличилась на 2 мм

3) уменьшилась на 4,5 мм

4) увеличилась на 4,5 мм

:4

16. [Уд] (ВО1) Световая волна из воздуха падает на плоскопараллельную стеклянную пластину толщиной d и показателем преломления n 1, лежащую на столе с показателем преломления n 2 (см. рисунок). Если n 1< n 2, то лучи 2 и 1, отраженные от нижней и верхней граней пластинки, усиливают друг друга в случае, представленном под номером

1) 2d(n2 – n1)=ml

2) 2dn1 + l/2=(2m+1)l/2

3) 2dn1=2ml/2

4) 2dn1 + l/2=2ml/2

: 3

17. [Уд] (ВО1) На плоскопараллельную стеклянную пластинку падает световая волна (см. рисунок). Волны 1 и 2, отраженные от верхней и нижней граней пластинки, интерферируют. Для показателей преломления сред выполняется соотношение: n1<n2<n3. Волны 1 и 2 гасят друг друга в случае, представленном под номером…

1) (AB+BCn 2 - AD×n 1=(2m+1)l/2

2) AD×n 1=2ml/2

3) (AB + BCn 2 - AD × n 1+l/2=(2m+1)l/2

4) (AB+BCn 2=2ml/2

: 1

18. [Уд] (ВО1) Свет падает на тонкую пленку с показателем преломления n, большим, чем показатель преломления окружающей среды. Разность хода лучей на выходе из тонкой пленки равна …

1) ВС+СD+BM + l/2

2) (BC+CD) n – BM – l/2

3) BC + CD – BM

4)(BC + CD) n - BM

: 4

19. [Уд] (ВО1) При интерференции света в тонкой пленке для наблюдения полос равной толщины должна быть переменной

1) длина световой волны

2) угол падения световой волны

3) толщина пленки

4) интенсивность падающей световой волны

:3

Контроль: П - промежуточный

П S314 Сингл (Дифракция) 17 заданий

1. [Уд] (ВО1) На пути сферической световой волны поставлена зонная пластинка (З.П.), которая перекрывает свет от нечетных зон Френеля. По сравнению с полностью открытым фронтом волны интенсивность света в точке наблюдения Р

1) станет равной нулю

2) не изменится

3) значительно уменьшится

4) значительно возрастет

:4

 

 

2. [Уд] (ВО1) На пути сферической световой волны поставлена зонная пластинка (З.П.), которая перекрывает свет от четных зон Френеля. По сравнению с полностью открытым фронтом волны интенсивность света в точке наблюдения Р

1) станет равной нулю

2) значительно уменьшится

3) значительно возрастет

4) не изменится

:3

3. [Уд] (ВО1) Дифракционная решетка содержит 500 штрихов на 1 миллиметр. Период дифракционной решетки равен … мкм.

1) 0,2

2) 0,5

3) 1

4) 2

:4

4. [Уд] (ВО1) Если период дифракционной решетки равен d = 800 нм, то на каждом миллиметре дифракционной решетки содержится … штрихов.

1) 400

2) 800

3) 1250

4) 1600

:3

5. [Уд] (ВО1) Сферическая световая волна падает на круглое отверстие в непрозрачном экране. Интенсивность света в точке наблюдения напротив отверстия по сравнению с полностью открытым фронтом волны

1) увеличится, если открыты две первые зоны Френеля

2) возрастает, если закрыты все зоны Френеля, кроме первой

3) не зависит от расстояния между экраном и точкой наблюдения

4) всегда будет меньше

:2

6. [Уд] (ВО1) На узкую щель шириной а = 0,03 мм падает нормально монохроматический свет с длиной волны l = 420 нм. Под углом j=3,20 наблюдается минимум света порядка m. Порядок дифракционного минимума m равен

1) 4

2) 7

3) 5

4) 2

:1

7. [Уд] (ВО1) На узкую щель шириной a =0,02 мм падает нормально монохроматический свет с длиной волны l=700 нм. Угол дифракции, соответствующий минимуму второго порядка, равен

1) j = 5º

2) j = 3º

3) j = 4º

4) j = 2º

:3

8. [Уд] (ВО1) Между точечным источником света и экраном помещен непрозрачный диск (см. рис.)

Распределение интенсивности I света на экране качественно правильно изображено на графике под номером

1) 1

2) 2

3) 3

4) 4

:3

9. [Уд] (ВО1) Между точечным источником света и экраном помещена непрозрачная преграда с круглым отверстием (см. рисунок). В отверстие укладывается четное число зон Френеля.

Распределение интенсивности I светана экране качественно правильно изображено на графике под номером

1) 1

2) 2

3) 3

4) 4

:4

10. [Уд] (ВО1) Между точечным источником света и экраном помещена непрозрачная преграда с круглым отверстием (см. рисунок). В отверстие укладывается нечетное число зон Френеля.

Распределение интенсивности I света на экране качественно правильно изображено на графике под номером

1) 1

2) 2

3) 3

4) 4

:3

11. [Уд] (ВО1) На рисунке представлена схема разбиения волновой поверхности Ф на зоны Френеля. Разность хода между лучами N1P и N2P равна

1) 2λ

2) λ

3) λ

4) λ

5) 0

:2

12. [Уд] (ВО1) На диафрагму с круглым отверстием падает нормально параллельный пучок света с длиной волны λ. На пути лучей, прошедших через отверстие, на расстоянии L помещают экран. Если отверстие открывает две зоны Френеля, то в центре экрана в точке М будет наблюдаться….

1) темное пятно

2) светлое пятно

3) однозначного ответа дать нельзя

:4

13. [Уд] (ВОМ) На дифракционную решетку нормально падает монохроматический свет. Число главных максимумов дифракционной картины зависит от…

1) постоянной решетки

2) размеров решетки

3) длины волны падающего света

4) интенсивности световой волны

:1, 3

 

14. [Уд] (ВОМ) Между точечным источником света S и точкой наблюдения Р поставлен экран (Э) с круглым отверстием. Верные утверждения:

1) с удалением от экрана точки наблюдения P число зон Френеля, укладывающихся в отверстии, уменьшается

2) с удалением точки наблюдения P число зон Френеля, укладывающихся в отверстии, не изменится

3) в точке наблюдения интенсивность света может оказаться близкой к нулю

4) расстояние от точки наблюдения до соответствующих краев двух соседних зон Френеля отличается на половину длины волны

:1, 3, 4

15. [Уд] (ВО1) Дифракционная решетка освещается монохроматическим светом. На угловое расстояние между главными максимумами не влияет

1) интенсивность света

2) постоянная дифракционной решетки

3) длина световой волны

4) порядки соседних максимумов

:1

16. [Уд] (ВО1) При дифракции на дифракционной решетке наблюдается зависимость интенсивности излучения с длиной волны λ = 600 нм от синуса угла дифракции, представленная на рисунке (изображены только главные максимумы). Постоянная d решетки равна…мкм

1) 1,2

2) 2,4

3) 3,0

4) 5,0

: 3

17. [Уд] (О) Одна и та же дифракционная решетка освещается различными монохроматическими излучениями с разными интенсивностями (J – интенсивность света, φ – угол дифракции). Случаю освещения светом с наименьшей длиной волны соответствует рисунок под номером

 

:4

 

Дисциплина: Физика

Индекс темы 320 «Квантовая оптика»

Вариация v321 Тепловое излучение

Контроль: П - промежуточный

П С321 Кластер (Графики, простые задания) 13 заданий

1. [Уд] (ВО1) На рисунке представлена зависимость спектральной плотности энергетической светимости абсолютно черного тела от длины волны при некоторой температуре. При повышении температуры

1) увеличится длина волны, соответствующая максимуму излучения

2) увеличится высота максимума функции

3) уменьшится площадь под графиком

4) уменьшится энергетическая светимость

:2

2. [Уд] (ВОМ) На рисунке представлена зависимость спектральной плотности энергетической светимости абсолютно черного тела от длины волны при некоторой температуре Т. При понижении температуры тела справедливы следующие утверждения:

1) значение l m, увеличится

2) значение l m уменьшится

3) максимальное значение (r l T) max увеличится

4) максимальное значение (r l T) ma x уменьшится

:1, 4

 

3. [Уд] (ВОМ) На рисунке представлена зависимость спектральной плотности энергетической светимости абсолютно черного тела от длины волны при некоторой температуре. При повышении температуры увеличатся:

1) длина волны, соответствующая максимуму излучения

2) высота максимума функции

3) площадь под графиком

4) энергетическая светимость

: 2, 3, 4

4. [Уд] (ВО1) Распределение энергии в спектре излучения абсолютно черного тела в зависимости от частоты излучения для температур Т 1 и Т 2 (Т 2 > Т 1) верно представлено на рисунке

 

1) 1

2) 2

3) 3

:1

 

5. [Уд] (ВО1) На рисунке показаны кривые зависимости спектральной плотности энергетической светимости абсолютно черного тела от длины волны при разных температурах. Если кривая 1 соответствует спектру излучения абсолютно черного тела при температуре 6000 К, то кривая 2 соответствует температуре … К.

1) 750

2) 1000

3) 3000

4) 1500

:4

6. [Уд] (ВО1) На рисунке показаны кривые зависимости спектральной плотности энергетической светимости абсолютно черного тела от длины волны при разных температурах. Если кривая 2 соответствует спектру излучения абсолютно черного тела при температуре 1450 К, то кривая 1 соответствует температуре … К.

1) 5800

2) 1933

3) 2900

4) 725

:1

7. [Уд] (ВО1) Если при уменьшении температуры площадь фигуры под графиком спектральной плотности энергетической светимости абсолютно черного тела r ν, T уменьшилась в 16 раз, то отношение температур Т 1/ Т 2 равно

1) 16

2) 8

3) 4

4) 2

:4

8. [Уд] (ВО1) На рисунке показаны кривые зависимости спектральной плотности энергетической светимости абсолютно черного тела от длины волны при разных температурах. Если длина волны, соответствующая максимуму излучения, уменьшилась в 4 раза, то температура абсолютно черного тела … раза.

1) увеличилась в 2

2) увеличилась в 4

3) уменьшилась в 4

4) уменьшилась в 2

:2

9. [Уд] (ВОМ) На рисунке изображены зависимости спектральной плотности энергетической светимости абсолютно черного и серого тела. Верные утверждения:

1) кривая 1 соответствует черному телу, а кривая 2 - серому

2) кривая 2 соответствует черному телу, а кривая 1 - серому

3) энергетическая светимость обоих тел одинакова

4) температура тел одинакова

:1, 4

10. [Уд] (BОМ) На рисунке приведено распределение энергии в спектре излучения для двух абсолютно черных тел, имеющих разную температуру. Справедливы утверждения…

1) Более высокую температуру имеет тело под номером 1

2) Более высокую температуру имеет тело под номером 2

3) Энергетическая светимость тела под номером 1 больше энергетической светимости тела под номером 2

4) Площадь под кривой 1 в 4 раза больше площади под кривой 2

: 1, 3

11. [Уд] (ВО1) Приведены графики зависимости спектральной плотности энергетической светимости абсолютно черных и серого тел от длины волны при разных температурах. Серому телу соответствует кривая под номером

1) 1

2) 2

3) 3

4) 4

:3

 

 

12. [Уд] (О) На рисунке приведены графики зависимости спектральной плотности энергетической светимости от длины волны для абсолютно черных тел и серого тела. Абсолютно черному телу с более высокой температурой соответствует кривая под номером

1) 1

2) 2

3) 3

4) 4

: 4

 

13. [Уд] (О) На рисунке приведены графики зависимости спектральной плотности энергетической светимости от длины волны для абсолютно черных тел и серого тела. Абсолютно черному телу с более низкой температурой соответствует кривая под номером

1) 1

2) 2

3) 3

4) 4

:1

 

Контроль: П - промежуточный

П S321 Сингл (Задачи на законы АЧТ простые) 11 заданий

1. [Уд] (ВО1) Зачерненный шарик остывает от температуры Т 1 = 600 К до Т2 = 300 К. Длина волны l m, соответствующая максимуму спектральной плотности его энергетической светимости, … раза.

1) уменьшится в 2

2) увеличится в 2

3) уменьшится в 4

4) увеличится в 4

:2

2. [Уд] (ВО1) Температура Т абсолютно черного тела изменилась при нагревании от Т 1 = 1000 К до Т 2 = 3000 К. При этом его энергетическая светимость R э … раз(а).

1) увеличилась в 3

2) увеличилась в 9

3) увеличилась в 27

4) увеличилась в 81

5) уменьшилась в 3

:4

3. [Уд] (ВО1) Температура Т абсолютно черного тела изменилась при нагревании от Т 1 = 1000 К до Т 2 = 3000 К. Длина волны l m, на которую приходится максимум спектральной плотности энергетической светимости, … раз(а).

1) увеличилась в 3

2) увеличилась в 9

3) уменьшилась в 3

4) уменьшилась в 9

:3

4. [Уд] (ВО1) Суммарная мощность теплового излучения абсолютно черного тела возросла в 16 раз. Температура тела при этом … раз(а).

1) возросла в

2) возросла в 2

3) возросла в 16

4) уменьшилась в 16

:2

5.[Уд] (ВО1) Температура двух абсолютно черных тел отличается в два раза (Т 2 = 2 Т 1). Отношение энергетических светимостей RT этих тел равно

1) RT 2/ RT 1 = 2

2) RT 2/ RT 1 = 4

3) RT 2/ RT 1 = 8

4) RT 2/ RT 1 = 16

5) RT 2/ RT 1 = 32

:4

6. [Уд] (ВО1) Температура двух абсолютно черных тел отличается в два раза (Т 2 = 2 Т 1). Отношение длин волн λ, соответствующих максимуму спектральной плотности энергетической светимости, равно

1) λ12 = 2

2) λ12 = 4

3)λ12 = 8

4)λ12 = 16

:1

7. [Уд] (ВО1) Чтобы максимум спектральной плотности энергетической светимости абсолютно черного тела сместился с λ m 1 = 0,8 мкм до λ m 2 = 0,4 мкм, температуру тела следует … раз(а).

1) увеличить в 2

2) уменьшить в 2

3) увеличить в 16

4) уменьшить в 16

:1

8. [Уд] (ВО1) Отношение энергий с единицы поверхности в единицу времени, излучаемых абсолютно черным телом и телом с коэффициентом поглощения a =0,25, находящимся при такой же температуре, равно

1) 0,25

2) 0,50

3) 2

4)4

:4

9. [Уд] (ВО1) Температура Т абсолютно черного тела изменилась при нагревании от Т 1 = 1000 К до Т 2 = 2000 К. Максимальная спектральная плотность энергетической светимости тела увеличилась в … раз(а).

1) 2

2) 4

3) 8

4) 16

5) 32

:5

10. [Уд] (ВО1) Суммарная мощность теплового излучения абсолютно черного тела возросла в 16 раз. Длина волны, на которую приходится максимум излучения АЧТ, уменьшилась в … раз(а).

1) 2

2) 4

3) 8

4) 32

:1

11. [Уд] (ВО1) Указаны спектральные коэффициенты поглощения для четырех тел. Наиболее эффективным нагревателем в нагревательном приборе является тело с коэффициентом поглощения равным…

1) а l Т = 1

2) а l Т = 0,8

3) а l Т = 0

4)

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...