Математические методы в экономике.
Линейное программирование. Задача оптимального производства продукции. Предприятие планирует выпуск двух видов продукции I и II, на производство которых расходуется три вида сырья А, В, и С. Потребность на каждую единицу -го вида продукции -го вида сырья, запас соответствующего вида сырья и прибыль от реализации единицы -го вида продукции заданы таблицей:
14.1.1Для производства двух видов продукции I и II с планом и единиц составить целевую функцию прибыли Z и соответствующую систему ограничений по запасам сырья, предполагая, что требуется изготовить в сумме не менее единиц обоих видов продукции. 14.1.2В условиях задачи 14.1.1. составить оптимальный план производства продукции, обеспечивающий максимальную прибыль . Определить остатки каждого вида сырья. (Задачу решить симплекс – методом) 14.1.3Построить по полученной системе ограничений многоугольник допустимых решений и найти оптимальный план производства геометрическим путем. Определить соответствующую прибыль . Транспортная задача. На трех складах , и хранится , и единиц одного и того же груза. Этот груз требуется доставить трем потребителям , и , заказы которых составляют , и единиц груза соответственно. Стоимость перевозок единицы груза с -го склада -му потребителю указаны в правых верхних углах соответствующих клеток транспортной таблицы:
14.2.1Сравнивая суммарный запас и суммарную потребность в грузе, установить, является ли модель транспортной задачи, заданная этой таблицей, открытой или закрытой. Если модель является открытой, то ее необходимо закрыть, добавив фиктивный склад с запасом в случае или фиктивного потребителя с потребностью в случае и положив соответствующие им тарифы перевозок нулевыми.
14.2.2Составить первоначальный план перевозок. (Рекомендуется воспользоваться методом наименьшей стоимости.) 14.2.3Проверить, является ли первоначальный план оптимальным в смысле суммарной стоимости перевозок, и если это так, то составить оптимальный план , обеспечивающий минимальную стоимость перевозок . Найти эту стоимость. (Рекомендуется воспользоваться методом потенциалов.) Матричные игры. 14.3.1 Игра задана матрицей Найти вероятности применения стратегий 1-м и 2-м игроком для получения цены игры. (Задачу решить аналитическим методом.) 14.3.2 Игра задана матрицами для - четного и для - нечетного. Применяя графический метод, найти смешанные оптимальные стратегии обоих игроков и определить цену игры.
Математические методы в экономике. 15.1 Сетевое планирование. Прогресс производства сложной продукции разбивается на отдельные этапы, зашифрованные номерами 1, 2,..., 10. 1 – начальный этап производства продукции, 10 – завершающий. Переход от -го этапа к -му этапу назовем операцией. Возможны выполнения операций и их продолжительности задаются таблицей.
15.1.3. Найдите критическое время завершения процесса работ Ткр и выделите стрелки, лежащие на критическом пути. 15.1.4. Для каждой некритической операции определите резервы свободного времени и проставьте их над стрелками рядом с в скобках. 15.1.5. Решите задачу табличным методом. Номера этапов, лежащие на критическом пути подчеркните. (В табличном методе кроме резервов свободного времени необходимо также найти полные резервы времени для каждого этапа.)
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|