Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные виды покрытий одноэт пром зд.. Железобетонные плиты покрытий




В настоящее время существует целый ряд типов плит (панелей) покрытий, решаемых по беспрогонней схеме, и постоянно разрабатываются новые конструктивные ре­шения. Наибольшее распространение получили плиты пролетом 12 м (рис. 11.9, а) и 6 м, шириной 3 м (основ­ные) и 1,5 м (доборные) с двумя продольными и попереч­ными ребрами. Основная продольная арматура выполня­ется предварительно напряженной. Полка армируется сварной сеткой, поперечные ребра — сварными каркаса­ми. Толщина полки принимается 2,5 см для плит проле­том 12 м и 3 см для плит пролетом 6 м. Бетон плит /= = 12 м классов ВЗО...В40, плит /=6 м—В15...ВЗО. В ря­де случаев уменьшают высоту сечения продольных ребер к опоре, что дает экономию бетона (до 9 %) и снижает стоимость конструкции. Поскольку нагрузка от собствен­ной массы плит покрытия составляет значительную долю от полной нагрузки, целесообразно изготовлять их из бе­тона на легких заполнителях (-у=18 кН/м3), что снижа­ет массу конструкций до 25 %.

Расчет плит в продольном направлении производят как однопролетных свободно опертых балок таврового сечения на совместное действие постоянных (от массы плиты и кровли) и временных (от снега) нагрузок.

Полка плиты в зависимости от расстояния между по­перечными ребрами рассчитывается как неразрезная ба­лочная плита или плита, опертая по контуру (см. гл. 9). Наиболее сложное напряженное состояние в плите возникает в опорных сечениях, которые усиливаются вута-ми и армируются дополнительными сетками.

Весьма экономичными и простыми в изготовлении являются плиты типа «2Т» размерами-, 3X6, 3X12 м при поперечном расположении ригелей) и 3X18, 3X24 м (при продольном) (рис. 11.9,6). К недостаткам этих конструкций относится сложность устройства продоль­ных швов между плитами.Существует два способа изготовления этих плит: пол­ка плиты и ребра бетонируются совместно; продольные предварительно напряженные ребра изготовляют зара­нее из бетона класса В40, а затем бетонируют полку. Связь ребер с полкой обеспечивают за счет устройства выпусков арматуры и сцепления бетона. Раздельное из­готовление экономичнее, поскольку позволяет снизить класс бетона полок до В15. Продольная арматура ре­бер — из высокопрочной стали, полка армируется сетка­ми. В продольном направлении плиты рассчитывают как свободно опертые однопролетные балки таврового сече­ния, в поперечном — учитывается разгружающее влияние свесов полок.

Плита крупноразмерная железобетонная сводчатая К.ЖС представляет собой короткую цилиндрическую обо­лочку с предварительно напряженными ребрами — диа­фрагмами сегментного очертания (рис. 11.9,в). Размеры плит в плане 3X12, 3X18 и 3X24 м. Очертание поверхно­сти оболочки принимают по квадратной параболе. Тол­щина оболочки не должна быть менее 30 мм в середине пролета с утолщением до 140...160 мм у торцов. Высоту поперечного сечения плиты в середине пролета принима­ют (1/15...1/20) Iв зависимости от пролета и нагрузки. Для уменьшения массы плиты диафрагмы проектируют минимальной толщины (40 мм) с вертикальными ребра­ми жесткости. Основную напрягаемую арматуру распо­лагают в нижней части диафрагмы. По концам напряга­емых стержней предусматривают анкерные детали, обе­спечивающие надежное закрепление рабочей арматуры в бетоне опорного узла. Эта арматура играет роль затяж­ки рассматриваемой сводчатой системы. Диафрагму ар­мируют сварными каркасами только в опорных зонах, в вертикальных ребрах устанавливают стержни-подвес­ки. Армируют оболочки сварной сеткой, подбираемой по расчету. Сопряжение оболочки с диафрагмой выполняют с помощью пологих вутов.

Плиты КЖС проектируют из бетонов классов В25......В50 в зависимости от пролетов и нагрузок. При расчете плиту рассматривают как цилиндрический свод, работа-ющий совместно с. диафрагмами. Полагают, что вдольнаправляющей оболочки действует только продольная сила Л^, поперек — поперечные силы (2 и изгибающие моменты М (см. рис. 11.9, в).

Изгибающий момент в системе «оболочка-—диафраг­ма» (в продольном направлении) воспринимается растя­нутой арматурой диафрагм и полкой (оболочкой), рабо­тающей на сжатие. В соответствии с этим необходимую площадь сечения рабочей арматуры диафрагмы А3,а и толщину оболочки Н определяют из условий:

А,.л = М/(RsZ), Н = М/(RbyZbt,),

где М — изгибающий балочный момент в рассматривае­мом сечении от расчетных нагрузок; z— расстояние от срединной поверхности оболочки до оси рабочей армату­ры; y — коэффициент условий работы;bt— ширина па­нели поверху.

Расчет плит КЖС на поперечную силу, по деформа­циям, образованию и раскрытию трещин рассмотрен в [9].

Плиты КЖС экономичны, достаточно просты в изго­товлении. Наиболее существенным их недостатком явля­ется трудоемкость устройства кровли по криволинейной поверхности.

Наряду с КЖС разработаны крупноразмерные плиты покрытий типа П размерами 3X18, 3X24 м под маяоук-лонную кровлю (рис. 11.9, г). Достоинство этих плит по сравнению с плитами КЖС — упрощение работ по уст­ройству кровли, а стоимость плит типа П с учетом экс­плуатационных расходов примерно равна стоимости плит КЖС. Общим недостатком крупноразмерных плит явля­ется усложнение устройства внутренних коммуникаций в уровне покрытия.

В последние годы предложены технические решения плит покрытия, направленные на снижение расхода ма­териалов и трудоемкости возведения. К ним относятся плиты с решетчатыми ребрами под малоуклонную кров­лю 3X18, 3X24 м, а также неразрезные ребристые пли­ты 3X24 м, укладываемые по стропильным конструкци­ям шагом 6 м.

В некоторых республиках нашей страны и за рубежом применяют также гиперболические панели-оболочки, плиты типа «Динакор» с квадратными пустотами и т. п. Однако использование их весьма ограничено из-за слож­ностей устройства кровли или изготовления панелей.

 

 

№20. Железобетонные стропильные балки, фермы и плиты

• Железобетонные стропильные балки применяют для перекрытия пролетов 6, 9, 12 и 18 м. При пролетах 24 м и более они уступают фермам по технико-экономи­ческим показателям и, как правило, не используются. Балки пролетами 6 и 9 м предназначены преимуществен­но для покрытия пристроек, а балки пролетом 12 м — в качестве поперечных или продольных ригелей покры­тия. Балки пролетом 18 м применяют в качестве попереч­ных ригелей, по которым укладывают плиты 3X6 или 3X12 м.

В зависимости от профиля кровли балки бывают дву­скатными (рис. 11.10,а, б), односкатными, с параллель­ными полками (рис. 11.10, в), ломаным или криволиней­ным очертанием верхней полки.

Ц, Двускатные балки имеют уклон верхней полки 1: 12 для скатных кровель, 1: 30 — для малоуклонных кровель. Вследствие своей экономичности они получили наиболее широкое распространение для покрытий пролетов 18 м. Определенные трудности при их изготовлении связаны с устройством каркасов переменной высоты. При необхо­димости пропуска коммуникаций в уровне покрытия (воздуховоды и т.п.) используют двускатные решетча­тые балки пролетом 12 и 18 м (рис. 11.10,6).

Односкатные балки обычно применяют для устрой­ства кровли с односторонним уклоном, например в при­стройках.

Балки с параллельными полками наиболее просты в изготовлении, имеют арматурные каркасы постоянной высоты и применяются в качестве продольных ригелей при горизонтальных кровлях. Однако по расходу бетона и арматуры они уступают двускатным.

Балки с ломаным и криволинейным верхним поя­сом, несмотря на экономичность, не нашли широкого при­менения вследствие сложной технологии их изготовления.

Высота сечения балок в середине пролета (1/10......1/12) /.

В целях экономии бетона сечение балок принимают тавровым (при /—6; 9 м) и двутавровым (/=12; 18 м). Ширину верхней полки балок из условия опирания плит покрытия и обеспечения устойчивости при транспортиро­вании и монтаже принимают равной (1/50...1/60) /, что обычно составляет 20...40 см. Ширину нижней полки(25...30 см) определяют из условия размещения в ней растянутой арматуры, прочности бетона пояса при дей«ствии усилия обжатия, а также условия опирания на ко­лонны. Толщину вертикальной стенки всредней частипролета (6...8 см) назначают из условий изготовления балки (в вертикальном положении) и размещения попе­речной арматуры (одного или двух каркасов). У опор стенка утолщается для обеспечения прочности и трещи-нестойкости опорных сечений. Бетон балок классов В25...В40.Все типы балок пролетами 12...18 м выполняют пред­варительно напряженными, как правило, с натяжением на упоры. Для исключения образования и раскрытия тре­щин в верхней зоне от усилий, возникающих при отпус­ке нижней арматуры, в ряде случаев в верхней зоне раз­мещают напрягаемую арматуру Л50 = (0,15...0,2) Азр. Поперечную и продольную монтажную арматуру выпол­няют из сталей классов А-1, А-П1. В опорных частях ба­лок, где возникают большие усилия от реакций опор и предварительного обжатия, устанавливают дополни­тельную арматуру в виде сеток и вертикальных стерж­ней.

Нагрузки на балку от веса покрытия и снега переда­ются через ребра плит в виде сосредоточенных сил. При числе их более четырех нагрузка заменяется эквивалент­ной равномерно распределенной. Нагрузки от подвесно­го транспорта и коммуникаций передаются на балку в виде сосредоточенных сил.

Балки рассматриваются как шарнирно опертые эле­менты с расчетным пролетом, равным расстоянию меж­ду линиями действия опорных реакций.

Подбор продольной и поперечной рабочей арматуры,
расчет прогибов и трещиностойкости балок производятся
как для обычного элемента таврового или двутаврового
сечения. При расчете нормальных сечений двускатных балок необходимо учитывать, что сечение, где требуется наи­большая площадь продольной растянутой арматуры, не совпадает с серединой пролета, где действует макси­мальный изгибающий момент. Это объясняется тем, что по мере удаления от середины балки рабочая1 высота ее на некотором участке уменьшается быстрее, чем внеш­ний изгибающий момент. При уклоне верхней полки 1: 12 опасное сечение находится на расстоянии 0,37/ от опоры.

. Железобетонные стропильные фермы

ф Железобетонные стропильные фермы применяют в качестве ригелей покрытий промышленных и общест­венных зданий при пролетах 18, 24, 30 м и шаге 6 и 12 м. При больших пролетах железобетонные фермы получа­ются тяжелыми, неудобными при транспортировании, трудоемкими в монтаже и могут применяться лишь при специальном обосновании. Фермы устанавливают на колонны или крепят к подстропильным фермам с помощью анкерных болтов или сварки закладных опорных элемен­тов. По фермам укладывают плиты покрытий и кровлю. Очертание стропильных ферм зависит от профиля кровли и общей компоновки покрытия. Для зданий со скатной кровлей как типовые фермы применяют: сег­ментные раскосные с верхним поясом ломаного очертания (рис. 11.11, а, ж) и безраскосные арочного очерта­ния (рис. 11.11,6, и), для зданий с плоской кровлей — раскосные с параллельными поясами (рис. 11.11, г). Для нетиповых решений возможны и другие виды ферм: ароч­ные раскосные с разреженной решеткой (рис. 11.11,0), полигональные (рис. 11.11,5), треугольные (рис..П.П.е), с нижним ломаным поясом (см. рис. 11.11,<3). Наиболее рациональны с точки зрения статической работы сегментные и арочные раскосные фермы. В сегментных раскосных фермах (см. рис. 11.11, а, ж) усилия в поясах по длине изменяются мало, а в эле­ментах решетки — невелики. Это объясняется тем, что очертание верхнего пояса близко к кривой давления. До­стоинством этого типа ферм также является то, что не­большая высота у опор приводит к уменьшению высоты стен здания и суммарной длины решетки. К числу недостатков следует отнести повышенную трудоемкость ра«бот, связанных с устройством скатной кровли,

в В последние годы широкое распространение полу­чили безраскосные арочные фермы (рис. 11.11,6, и), ко­торые отличаются простотой и удобством изготовления. Особенно целесообразно безраскосные фермы применять в зданиях, где межферменное пространство используется для коммуникаций, технических этажей, а также в цехах с насыщенным подвесным транспортным оборудованием. Эти фермы часто используются для устройства плоской кровли путем установки дополнительных стоек. Недо­статком этого типа ферм является то, что в стойках и по­ясах фермы возникают значительные изгибающие мо­менты, для воспринятая которых требуется дополнитель­ный расход арматуры, что приводит к увеличению стоимости ферм.

© Железобетонные фермы с параллельными поясами обеспечивают более простое устройство плоской кровли.
Однако они имеют большую высоту на опорах, что поми­мо увеличения высоты наружных стен приводит к необ­
ходимости устройства вертикальных связей между фер­
мами в плоскости опорных стоек. По расходу бетона такие
фермы уступают, сегментным и арочным. Предложен­
ное в последние годы техническое решение, предусматри­
вающее отведение части предварительно напряженной
арматуры из нижнего пояса в растянутые раскосы (рис,
11.11,к), позволяет улучшить их технико-экономические
показатели.

Расстояние между узлами верхнего пояса рассмот­ренных типов ферм принимается равным ширине плиты покрытия (3 м) в целях обеспечения узловой передачи нагрузки.

© Арочные раскосные фермы (рис. 11.11, б) имеют мощный криволинейный пояс кругового очертания и лег­кую разреженную решетку. В таких фермах допускается неузловая передача нагрузки от плит покрытия. Возни­кающие при этом изгибающие моменты от вертикальной нагрузки уменьшаются за счет моментов обратного зна­ка, создаваемых эксцентрично приложенными продоль­ными сжимающими усилиями в верхнем поясе (рис. 11.11,«). По экономическим показателям эти фермы при' пролетах 18...24 м несколько дороже сегментных, а при пролетах 30 м и более — экономичнее.

ц Треугольные фермы невыгодны ввиду большой вы­соты и значительного расхода материалов. Применениеих оправдано только в случае использования кровли из асбестоцементных материалов или металлических волни­стых листов, для которых требуется значительный уклон.

Фермы с ломаным нижним поясом (рис. 11.11, д) более устойчивы, не требуют установки дополнительных связей, но сложны в изготовлении.

По способу изготовления различают фермы с за­кладной решеткой и фермы, бетонируемые целиком.

В фермах с закладной решеткой элементы решетки готовятся заранее в отдельных формах, а затем уклады­ваются в общую форму, после чего бетонируются пояса и узлы. Этот способ позволяет делать элементы решетки небольшого сечения и из бетона более низких классов, что приводит к экономии бетона и цемента. Фермы про­летом 30 м и более для обеспечения возможности транс­портирования обычно изготовляются из двух отправочных элементов и объединяются на строительной площадке стыком на сварке (рис. 11.11,л). Такие фермы дороже цельных на 10...15 % и менее надежны в работе при ди­намических нагрузках.

Высота ферм в середине пролета (1/6... 1/10) /. Ши­рина сечения верхнего пояса назначается из условия ус­тойчивости его из плоскости фермы при монтаже и пере­возке (1/70..Л/80) /, а также из условия опирания плит. Ширина сечения нижнего пояса принимается такой же, как и верхнего, а высота сечения назначается из условия размещения рабочей растянутой арматуры. Размеры се­чения сжатых элементов решетки и стоек определяются расчетом, при этом ширину их целесообразно назначать равной ширине поясов для удобства бетонирования в го­ризонтальном положении.

Фермы изготовляют из бетона классов В25...В50. Нижний пояс предварительно напряженный, армируется стержневой арматурой классов А-1У, А-У, А-У1, Ат-1У, Ат-У, канатами К-7, К-19. Натяжение арматуры обычно осуществляют на упоры. Чтобы предотвратить появление продольных трещин, нижний пояс армируют конструк­тивной поперечной арматурой из проволоки е?=5...6 мм, соединенной обычной арматурой в каркасы (рис. 11.11,дас, сечение /—1). В верхних поясах, раскосах и стойках применяют сварные каркасы из горячекатаной стали пе­риодического профиля классов А-Ш, А-П.

Особое внимание при конструировании ферм следует обращать на армирование узлов. В опорном узле для вос­принятая больших перерезывающих сил и сил обжатия

устанавливают поперечную арматуру / (рис. 11.11,ж), объединенную контурным стержнем 2 в плоский каркас. Два таких плоских каркаса образуют пространственный каркас узла. Для улучшения условий анкеровки напря­гаемой арматуры и предотвращения возникновения про­дельных трещин в бетоне устанавливают косвенную ар­матуру 3 в виде сеток. Для предотвращения раскрытия трещин в месте сопряжения нижнего пояса с узлом ста­вят дополнительную сетку 4. Арматуру элементов решет­ки заводят в узлы, которые имеют уширения, позволяю­щие лучше разместить ее и заанкеровать (рис. 11.11,л)\

Фермы рассчитывают на эксплуатационные нагрузки от покрытия, фермы, снега, подвесного оборудования и т. п., а также нагрузки, возникающие при изготовлении, транспортировании и монтаже. Нагрузка от покрытия и от массы фермы считается приложенной к узлам верх­него пояса, а нагрузка от подвесного оборудования — к узлам нижнего.

Железобетонная ферма имеет жесткие узлы и пред­ставляет собой многократно статически неопределимую рамную систему. Однако в предельном состоянии по прочности в узлах раскрываются трещины, жесткость их падает, и влиянием возникающих изгибающих моментов можно пренебречь, рассматривая узлы как шарнирные. Это позволяет при расчете прочности рассматривать фер­му как статически определимую систему. Такой расчет в общем верно отражает характер работы конструкции и обеспечивает достаточную точность. Если нагрузка приложена в панелях верхнего пояса между узлами, то при расчете учитывают местный изгиб верхнего пояса, При определении изгибающих моментов от внеузловой нагрузки пояс фермы рассматривают как неразрезную балку, опорами которой являются узлы фермы. При на­личии выгибов или изломов верхнего пояса учитывают разгружающее действие момента от продольной силы N (рис. 11.11, и).

При расчете безраскосной фермы принимают жест­кое соединение поясов и стоек в узле. Усилия определя-> ют как для статически неопределимой системы.

Расчетные усилия в элементах ферм находят от всех возможных невыгодных сочетаний действующих нагрузок. По найденным усилиям производят расчет сечений эле­ментов. Верхний пояс рассчитывают на сжатие со слу­чайным или расчетным эксцентриситетом, нижний — на центральное растяжение, решетку — на сжатие или рас-.тяжение. Расчетные длины элементов в плоскости фер­мы и из ее плоскости принимают по [1].

При расчете трещиностойкости предварительно на­пряженного нижнего пояса необходимо учитывать влия­ние изгибающих моментов, возникающих вследствие жесткости узлов. Эти моменты в фермах со слабоработаю­щей решеткой (например, в сегментных) можно опреде­лить, рассматривая нижний пояс как неразрезную бал­ку на упругооседающих опорах; осадку опор находят по диаграмме перемещений фермы [13].

 

Железобетонные плиты покрытий

В настоящее время существует целый ряд типов плит (панелей) покрытий, решаемых по беспрогонней схеме, и постоянно разрабатываются новые конструктивные ре­шения. Наибольшее распространение получили плиты пролетом 12 м (рис. 11.9, а) и 6 м, шириной 3 м (основ­ные) и 1,5 м (доборные) с двумя продольными и попереч­ными ребрами. Основная продольная арматура выполня­ется предварительно напряженной. Полка армируется сварной сеткой, поперечные ребра — сварными каркаса­ми. Толщина полки принимается 2,5 см для плит проле­том 12 м и 3 см для плит пролетом 6 м. Бетон плит /= = 12 м классов ВЗО...В40, плит /=6 м—В15...ВЗО. В ря­де случаев уменьшают высоту сечения продольных ребер к опоре, что дает экономию бетона (до 9 %) и снижает стоимость конструкции. Поскольку нагрузка от собствен­ной массы плит покрытия составляет значительную долю от полной нагрузки, целесообразно изготовлять их из бе­тона на легких заполнителях (-у=18 кН/м3), что снижа­ет массу конструкций до 25 %.

Расчет плит в продольном направлении производят как однопролетных свободно опертых балок таврового сечения на совместное действие постоянных (от массы плиты и кровли) и временных (от снега) нагрузок.

Полка плиты в зависимости от расстояния между по­перечными ребрами рассчитывается как неразрезная ба­лочная плита или плита, опертая по контуру (см. гл. 9). Наиболее сложное напряженное состояние в плите возникает в опорных сечениях, которые усиливаются вута-ми и армируются дополнительными сетками.

Весьма экономичными и простыми в изготовлении являются плиты типа «2Т» размерами-, 3X6, 3X12 м при поперечном расположении ригелей) и 3X18, 3X24 м (при продольном) (рис. 11.9,6). К недостаткам этих конструкций относится сложность устройства продоль­ных швов между плитами.Существует два способа изготовления этих плит: пол­ка плиты и ребра бетонируются совместно; продольные предварительно напряженные ребра изготовляют зара­нее из бетона класса В40, а затем бетонируют полку. Связь ребер с полкой обеспечивают за счет устройства выпусков арматуры и сцепления бетона. Раздельное из­готовление экономичнее, поскольку позволяет снизить класс бетона полок до В15. Продольная арматура ре­бер — из высокопрочной стали, полка армируется сетка­ми. В продольном направлении плиты рассчитывают как свободно опертые однопролетные балки таврового сече­ния, в поперечном — учитывается разгружающее влияние свесов полок.

Плита крупноразмерная железобетонная сводчатая К.ЖС представляет собой короткую цилиндрическую обо­лочку с предварительно напряженными ребрами — диа­фрагмами сегментного очертания (рис. 11.9,в). Размеры плит в плане 3X12, 3X18 и 3X24 м. Очертание поверхно­сти оболочки принимают по квадратной параболе. Тол­щина оболочки не должна быть менее 30 мм в середине пролета с утолщением до 140...160 мм у торцов. Высоту поперечного сечения плиты в середине пролета принима­ют (1/15...1/20) Iв зависимости от пролета и нагрузки. Для уменьшения массы плиты диафрагмы проектируют минимальной толщины (40 мм) с вертикальными ребра­ми жесткости. Основную напрягаемую арматуру распо­лагают в нижней части диафрагмы. По концам напряга­емых стержней предусматривают анкерные детали, обе­спечивающие надежное закрепление рабочей арматуры в бетоне опорного узла. Эта арматура играет роль затяж­ки рассматриваемой сводчатой системы. Диафрагму ар­мируют сварными каркасами только в опорных зонах, в вертикальных ребрах устанавливают стержни-подвес­ки. Армируют оболочки сварной сеткой, подбираемой по расчету. Сопряжение оболочки с диафрагмой выполняют с помощью пологих вутов.

Плиты КЖС проектируют из бетонов классов В25......В50 в зависимости от пролетов и нагрузок. При расчете плиту рассматривают как цилиндрический свод, работа-ющий совместно с. диафрагмами. Полагают, что вдольнаправляющей оболочки действует только продольная сила Л^, поперек — поперечные силы (2 и изгибающие моменты М (см. рис. 11.9, в).

Изгибающий момент в системе «оболочка-—диафраг­ма» (в продольном направлении) воспринимается растя­нутой арматурой диафрагм и полкой (оболочкой), рабо­тающей на сжатие. В соответствии с этим необходимую площадь сечения рабочей арматуры диафрагмы А3,а и толщину оболочки Н определяют из условий:

А,.л = М/(RsZ), Н = М/(RbyZbt,),

где М — изгибающий балочный момент в рассматривае­мом сечении от расчетных нагрузок; z— расстояние от срединной поверхности оболочки до оси рабочей армату­ры; y — коэффициент условий работы;bt— ширина па­нели поверху.

Расчет плит КЖС на поперечную силу, по деформа­циям, образованию и раскрытию трещин рассмотрен в [9].

Плиты КЖС экономичны, достаточно просты в изго­товлении. Наиболее существенным их недостатком явля­ется трудоемкость устройства кровли по криволинейной поверхности.

Наряду с КЖС разработаны крупноразмерные плиты покрытий типа П размерами 3X18, 3X24 м под маяоук-лонную кровлю (рис. 11.9, г). Достоинство этих плит по сравнению с плитами КЖС — упрощение работ по уст­ройству кровли, а стоимость плит типа П с учетом экс­плуатационных расходов примерно равна стоимости плит КЖС. Общим недостатком крупноразмерных плит явля­ется усложнение устройства внутренних коммуникаций в уровне покрытия.

В последние годы предложены технические решения плит покрытия, направленные на снижение расхода ма­териалов и трудоемкости возведения. К ним относятся плиты с решетчатыми ребрами под малоуклонную кров­лю 3X18, 3X24 м, а также неразрезные ребристые пли­ты 3X24 м, укладываемые по стропильным конструкци­ям шагом 6 м.

В некоторых республиках нашей страны и за рубежом применяют также гиперболические панели-оболочки, плиты типа «Динакор» с квадратными пустотами и т. п. Однако использование их весьма ограничено из-за слож­ностей устройства кровли или изготовления панелей.

№21. Основные жб конструкции многэт зд Конструктивные схемы многоэтажных зданий

Все многоэтажные здания можно разделить на: кар­касные, панельные, объемно-блочные и комбинирован­ные. Тот или иной тип выбирают из соображений функ­ционального назначения здания, наличия индустриаль­ной базы, этажности, экономики, условий строительства (вечная мерзлота, сейсмика).

Конструкции многоэтажных гражданских зданий

И Каркасные здания. Многоэтажные гражданские каркасные здания широко применяют для размещения предприятий торговли, как административные, жилые и т. п. Обычно они решаются по рамно-связевой или свя-зевой системам, последняя применяется чаще. К верти­кальным несущим элементам таких зданий относятся колонны, диафрагмы и ядра жесткости.

© Колонны зданий массового строительства при высо­те до 16 этажей имеют унифицированное сечение 400Х Х400 мм (рис. 12.3,а). Увеличение их несущей способно­сти в нижних этажах достигается повышением класса бетона (до В60) и процента армирования гибкой арма­турой (до 11=15%). Продольная арматура из стали класса А-П1. Для колонн зданий большей этажности мо­жно применять жесткую арматуру (рис. 12.3, е), однако использование ее в колоннах приводит к большому рас­ходу стали.

Повышение несущей способности колонн и сохране­ние их унифицированного сечения можно получить пу^ тем поперечного армирования часто расположенными сварными сетками в сочетании с продольной обычной и особенно высокопрочной арматурой. В этом случае предельные продольные деформации бетона при сжатии повышаются более чем в 2 раза и на­пряжения в сжатой высокопрочной арматуре достигают условного предела текучести. Наряду с этим появились предложения по усилению колонн нижних этажей, на­груженных продольными силами с малыми эксцентриси-тетами, сердечниками из высокопрочной гибкой армату-ры '(рис. 12.3,6).

Разрезка колонн линейная, на несколько этажей. Име­ется тенденция к увеличению длины сборных элементов колонн до 4...5 этажей (до 15 м) и целях уменьшения числа стыков и исключения случайных эксцентриситетов, вызванных неточностями монтажа. Для таких гибких элементов существенное значение приобретает расчет прочности и трещиностойкости в стадиях транспортиро­вания и монтажа. В целях повышения этих качеств целе­сообразно предварительно напрягать продольную арма­туру колонн. Стыкование колонн по высоте производится ванной сваркой выпусков рабочей арматуры (рис. 5Да) или без сварки через тонкие растворные швы.

Особенностью стыков, выполняемых ванной сваркой арматуры больших диаметров 36...40 мм, является воз­никновение сжатия в бетоне и растяжения в арматуре из-за разогрева стержней при сварке. Растягивающие на­пряжения в арматуре могут привести к разрыву стерж­ней. Во избежание этого сварку стержней выполняют по диагонали последовательно по одному стержню или попарно. Для уменьшения свободной длины сварных вы­пусков продольной арматуры колонны устраивают хо­мутА=12 мм, охватывающий продольные рабочие стержни и предохраняющий их от потери устойчивости,

% Диафрагмы, воспринимающие главным образом го­ризонтальные нагрузки, обычно образуются из железо­бетонных панелей толщиной 14...18 см, располагаемых между колоннами и соединенных с ними с помощью свя­зей, воспринимающих сдвигающие усилия. Панели диа­фрагм могут быть плоскими или двухконсольными (рис-, 12.3, г, д). Плоские панели устанавливают по осям, парал­лельным направлению настилов перекрытий. Двухкрн* сольные располагают в плоскостях, параллельных рамам каркаса, совмещая их с ригелями. Армируют панели кбн-турными и промежуточными каркасами из стержней 012...16 мм или сетками из проволоки 05...6 мм с ша­гом 200 мм, располагаемым у обеих граней. Связи между панелями и колоннами осуществляют путем сварки закладных деталей: вертикальные швы заполняют це-ментно-песчаным раствором, горизонтальные швы — бе­тоном на мелком щебне. Горизонтальные стыки диа­фрагм могут быть шпоночными и плоскими. Практика показывает, что при таком соединении диафрагмы рабо­тают как сплошные монолитные столбы.

Количество и расстановка диафрагм в плане здания должны обеспечивать необходимую прочность и прост­ранственную жесткость здания в обоих направлениях, препятствовать кручению его в плане, не создавать боль­ших температурных усилий или неравномерных дефор­маций вертикальных элементов (см. рис. 12.1, а). Сле­дует стремиться к сокращению общего числа диафрагм, увеличивая их размеры.

При больших горизонтальных нагрузках в диафраг­мах, обычно работающих на сжатие, в части сечений мо­гут возникать растягивающие усилия. В этом случае диафрагмы могут быть запроектированы предваритель­но напряженными (рис. 12.3, е).

@ Ядра жесткости выполняются монолитными и сбор­ными. Сечение ядер жесткости может быть коробча­тым, двутавровым и т. п. Монолитные ядра жесткости делают в скользящей или переставной опалубке, при этом оставляют отверстия для дверных проемов и установки ригелей. Толщина стенок 20...40 см. Сборные ядра соби­рают из отдельных панелей стен подобно плоским диа­фрагмам. В зданиях, имеющих значительную протяжен­ность или сложную форму в плане, может устраиваться несколько ядер жесткости.

@ Плиты и ригели составляют сборные перекрытия. Ригели проектируют таврового сечения с полкой в ниж­ней зоне, на которую опираются плиты перекрытий; та­кое решение позволяет снизить строительную высоту этажа, однако в этом случае необходимо исключить воз­можность откола полки в месте ее примыкания к ребру путем увеличения ее высоты или армирования. Соедине­ние ригелей с колоннами в связевых системах осуществ­ляют с помощью стыка со скрытой консолью (см. рис. 9.4,в), воспринимающего небольшой опорный момент. Ограничение опорного момента заданной величиной (55 кН-м) достигают с помощью специальной металли­ческой накладки по верху ригеля — «рыбки», приварива­емой к ригелю и колонне. «Рыбка» имеет суженный участок, поперечное сечение которого соответствует растягивающему усилию при заданном опорном моменте. Уве­личение нагрузки вызывает в суженной части накладки пластические деформации, обеспечивающие поворот се­чения ригеля без увеличения опорного момента. Стык связевого каркаса может также решаться шарнирным. Конструкция его отличается от рассмотренной отсутстви­ем «рыбки».

В рамно-связевых системах, где узлы воспринимают изгибающие моменты от эксплуатационных нагрузок, стык принципиально решается так же, как и в рамных системах (см. рис. 9.4, а).

Панели перекрытий подразделяются на связевые, ук­ладываемые по внутренним осям здания, рядовые и фа­садные, укладываемые по наружным рядам колонн и не­сущие нагрузку от ограждающих конструкций. Рядовые и фасадные панели связываются поверху монтажными накладками, обеспечивающими передачу растягивающих усилий в горизонтальных дисках покрытий.

Панели перекрытий чаще всего выполняют многопус­тотными, высотой сечения 220 мм. Для эффективного воспринятия сдвигающих усилий при работе плит в со­ставе перекрытия в швах между плитами устраивают шпонки. С этой целью на боковых поверхностях плит ос­тавляют углубления, после заливки швов бетоном и его твердения швы работают как шпоночные соединения. Кроме того, панели могут соединяться путем сварки за­кладных деталей, а при больших расстояниях между вертикальными диафрагмами (20...30 м) по контуру пе­рекрытия устраивают обвязочные балки.

В зданиях рамно-связевой системы роль продольных ригелей выполняют предварительно напряженные плос­кие панели-распорки, которые выступами опираются на полки ригелей.

В торговых, административных и других зданиях, тре­бующих увеличенной сетки колонн, применяют и ребри­стые панели, например типа 2Т.

Перекрытия зданий с ядрами жесткости, имеющих сложное очертание в плане, могут выполняться в виде монолитных безбалочных плит, возводимых методом подъема перекрытий.

И Панельные здания. Эти здания используют главным образом в жилищном строительстве. Ширина зданий из условий освещенности и удобства планировки внутрен­них помещений назначается 12... 16 м. Панельные дома массового строительства решаются в одном из следующих вариантов: 1) с продольными и поперечными несу­щими стенами; 2) только с продольными несущими; 3) только с поперечными несущими стенами. Конструк- ' тивная схема с поперечными несущими стенами более выгодна, так как панели перекрытий в этом случае опи­раются на внутренние поперечные стены (перегородки), что позволяет предельно укрупнять и облегчать наруж­ные стеновые панели. Последние, не воспринимая на-; грузки от перекрытий и выполняя лишь ограждающие функции, могут быть изготовлены из легких зффектив-; ных материалов. Основными конструкциями панельных; зданий являются внутренние и наружные стеновые па-' нели и панели перекрытий.

^Внутренние несущие панели стен (рис. 12.4, а) обычно проектируют однослойными из тяжелого бетона класса не ниже В15. Толщину панелей определяют тре­бованиями прочности, звукоизоляции и огнестойкости. Площадь горизонтальной и вертикальной арматуры, ус­танавливаемой у обеих плоскостей панели, принимают конструктивно в количестве 0,2 см2/м соответствующего сечения панели.

® Наружные ненесущие стены выполняют в виде од­нослойных панелей толщиной 240...350 мм из ячеистого бетона.

@ Наружные несущие панели проектируют преимуще­ственно двухслойными или трехслойными (рис. 12.4, б, в). Арматуру устанавливают только в слоях тяжелого бето­на и выполняют в виде пространственного арматурного блока. Расчетной является только арматура перемычек.

Панели перекрытий выполняют,в виде многопустот­ных или сплошных плит. При пролетах до 4,8 м плиты выполняют без предварительного напряжения, при боль­ших пролетах — предварительно напряженными. Разме­щение арматуры зависит от схемы работы панели. В зда­нии с продольными и поперечными несущими стенами (первый вариант) панели работают как плиты, опертые по трем или четырем сторонам, в остальных случаях — по двум.

Соединения панелей стен-и перекрытий должны обе­спечить совместную работу элементов в здании и воспри­нятое усилий сжатия, растяжения и сдвига. Вертикаль­ные стыки между панелями осуществляют с помощью бетонных шпоночных швов и сварки закладных деталей. Горизонтальные стыки по способу передачи сжимающих усилий подразделяются на платформенные (рис. 12.4, г),

контактные (рис. 12.4, д) и комбинированные (рис. 12.4, е). Сопряжения внутренних стен с перекрытиями обычно выполняют с платформенными стыками, наруж­ных с платформенными и комбинированнымиВ последние годы разработано конструктивное реше­ние, получившее название «скрытый каркас», совмещаю­щее достоинства зданий каркасного и панельного типа [17].Несущими вертикальными конструкциями являют-ся стеновые панели, усиленные бортовыми стальными элементами. Последние соединяются с бетоном панели анкерными связями сдвига (рис. 12.4,ж). Стыки пане­лей скрытого каркаса с перекрытиями выполняются платформенными или сборно-монолитными. Соединение бортовых элементов осуществляется на растворе. Кон­струкции «скрытого каркаса» экономичнее обычных кар­касных за счет хорошей совместной работы панелей с бортовыми элементами и позволяют довести этажность здания до 50 и более

Конструкции многоэтажных промышленных зданий

В многоэтажных промышленных зданиях размеща­ются производства с вертикальными технологическими процессами или со сравнительно небольшими габарита­ми и массой оборудования: химического, пищевой про­мышленности, приборостроения и т. п. К таким зданиям относятся также лабораторные и административно-быто­вые корпуса предприятий различных отраслей промыш­ленности. Доля многоэтажных промышленных зданий в общем объеме промышленных зданий составляет око­ло 30 %. В последние годы наметилась тенденция к рос­ту этого показателя.

Высоту промышленных зданий назначают по услови­ям технологического процесса и обычно принимают 3...7 этажей. Предполагается увеличение этажности до 8...! О и более. В соответствии с требованиями унифика­ции высота этажа кратна 1,2м. Ширина здания обычно составляет 12...60 м. Наиболее распространены сетки ко­лонн 6X6, 9X6 и 12X6 м. Размеры сетки колонн назна­чаются с учетом временных нагрузок (10...30 кН/м2).

Пространственный каркас промышленных зданий ре­шается по смешанной системе. Прочность и устойчивость каркаса в этом случае обеспечиваются в поперечном на­правлении рамой с жесткими узлами (рис. 12.5, а), в про­дольном — вертикальными стальными связями по колон­нам, устраиваемыми в каждом продольном ряду или раз­реженно через ряд колонн и более (рис. 12.5,6). Если стальные связи по условиям технологии нежелательны, то для обеспечения устойчивости каркаса в продольном направлении возможно устройство «рамных устоев» (оис. 12.5, б) в одном или нескольких пролетах.Многоэтажные сборные рамы членятся на отдельные элементы, которые соединяются путем жестких стыков. Наибольшее распространение получили сборные рамы со стыками ригелей и колонн, выполняемых на консолях(линейная разрезка). Возможны и иные решения (рис.

12.5,г, д); каждое из них имеет определенные достоин­ства и недостатки. В крестовой системе (рис. 12.5, г) сты­ки упрощаются за счет вынесения их в сечения с неболь­шими моментами. В конструкции, представленной на рис. 12.5, д, сокращается число типов элементов много-

этажных рам. Однако оба последних решения менее вы­годны с точки зрения изготовления и транспортировки. Применение их может оказаться целесоообразным в сей­смических районах.

Ф Колонны стыкуют через 1, 2, 3 и даже 4 этажа; по­следнее— экономичнее, поскольку сокращается количе­ство стыков. В большинстве случаев стык колонн устраи-: вают с плоскими торцами колонн и осуществляют путем ванной сварки выпусков продольной рабочей арматуры' с последующим омоноличиванием (см. рис. 5.5,а). Воз­можно соединение арматуры и устройство стыков с по­мощью эпоксидных смол и т.д. Сечение колонн 400X400' и 600X400 мм. Бетон классов В20...В50.

® Панели ребристые предварительно напряженные
шириной 1500 мм обычно применяют для междуэтажных
перекрытий. Панели, укладываемые по осям колонн, слу­
жат распорками и передают продольные нагрузки на
связи, а также обеспечивают продольную устойчивость;
рам при монтаже. !

• Ригели бывают таврового и прямоугольного сече­ния, в первом случае панели опираются на полки, во вто­ром— сверху ригеля (рис. 12.5, е, ж). Ригеля для проле­тов 6 м изготовляют из бетона классов В15...В25, для пролетов 9м — из бетона классов В20...ВЗО, а для проле­тов 12 м — из бетона классов ВЗО...В40. Ригели для про­летов 6 м изготовляют с ненапрягаемой и напрягаемой арматурой, а для пролетов 9... 12 м — только с предвари­тельно напряженной арматурой.

Если по условиям технологического процесса требует­ся большая сетка колонн, то здание проектируют с меж­ферменными этажами (рис. 12.5, з). В этом случае без­раскосные фермы жестко связывают с колоннами, и они работают как ригели многоэтажных рам. Межферменное пространство используют под производственные помеще­ния.

Многоэтажные производственные здания с относи­тельно небольшими полезными нагрузками (до 12,5 кН/ /м2) могут решаться по связевой системе в обоих направ­лениях с применением облегченных конструкций карка­са. Колонны в этом случае имеют сечение 400X400 мм. Ригели таврового сечения соединяют с колоннами с по­мощью скрытого стыка (см. рис. 9.4,0), Плиты перекры­тий могут быть плоскими высотой сечения 220 мм или ребристыми /1=300 мм. Пространственная жесткость та­ких зданий обеспечивается установкой на всех этажахвертикальных элементов — диафрагм из железобетонных панелей, стальных связей или однопролетных многоэтаж­ных рам.

В многоэтажных производственных и складских зда­ниях холодильников, мясокомбинатов, молокозаводов, рыбоперерабатывающих заводов, а также гаражей и т. п., в которых предпочтительны перекрытия без пустот с гладкими потолками, широко применяют сборные без­балочные перекрытия (см. гл. 9).

При высоких полезных нагрузках 30...50 кН/м2 при­меняют сборно-монолитные конструкции перекрытий.

 

 

 

 

 

 

 

 

 

№23. основные виды каркасно-панельных и бескаркасных крупнопанельных ж/б зданий.

Одноэтажные каркасные здания широко применяют­ся в промышленном и сельскохозяйствен­ном строительстве. Каркас со­стоит из вертикальных элементов — колонн и горизон­тальных - ригелей и балок.

Особенность одноэтажных промышленных зданий — наличие в них различных транспортных средств в виде мостовых кранов, которые перемещаются по специаль­ным путям, опертым на колонны, или в виде подвесных кранов, перемещаемых по путям, подвешенным к несу­щим элементам покрытия.

Применяются также не связанные с каркасом здания напольные краны.

Элементами конструкций одноэтажного каркасного промышленного здания с балочным покрытием являются: колонны, заделанные в фундаментах; ригели покрытия (фермы, балки или арки), опирающиеся на колонны; плиты покрытия, уложенные по ригелям; подкрановые балки; световые или аэрационные фонари. Сборные железобетонные конструкции в сельскохозяйственном строительстве обеспечивают огнестойкость и долговечность зданий, а также уменьшение расходов на ремонт, экономию леса и существенное снижение тру­доемкости.

В сельскохозяйственных зданиях применяются в ос­новном такие же железобетонные конструкции, как в од­ноэтажных каркасных промышленных зданиях, но мень­шего размера и более простой формой поперечного сечения элементов. Рекомендованы пролеты 6; 7,5; 12; 18 и 21 м; шаг колонн 3; 4,5 и 6 м; высота по­мещений 2,4; 2,7; 3; 3,6 и 4,8 м.

 

Основной конструкцией каркаса является поперечная рама, образованная колоннами и ригелями.

Пространственная жесткость и устойчивость одно­этажного каркасного здания достигается защемлением колонн в фундаментах и соединением их с жестким в своей плоскости покрытием.

В поперечном направлении пространственная жест­кость здания обеспечивается поперечными рамами (рис. 15.1,с), в продольном — продольными рамами (рис. 15.1, с), которые образуются теми же колоннами и свя­занными с ними элементами покрытия, подкрановыми балками, а в отдельных случаях и связями.

Каркас воспринимает все внешние вертикальные на­грузки от покрытия и массы каркаса, а также от подкра­новых балок; одновременно каркас воспринимает и гори­зонтальные нагрузки от подкрановых балок и ветра, дей­ствующего на стены.

В некоторых случаях (например, при пролетах 30 м и более) каркас делают смешанным — колонны железо бетонные, а ригели в виде стальных ферм.

Каркасные промышленные и сельскохозяйственные здания проектируют на основе единой модульной систе­мы, при которой в промышленном строительстве пролеты зданий назначают кратными 6 м (12; 18; 24; 30 и 36 м), а для сельскохозяйственных зданий — кратными 1,5 м (6; 7,5; 12; 18 и 21 м).

При пролетах 12—18 м ригелями служат стропильные балки, а при пролетах 18—36 м — фермы.

Шаг колонн в промышленных зданиях назначают 6 и 12 м, а при покрытиях из оболочек— 18, 24 м и более; в сельскохозяйственных зданиях шаг колонн установлен | 3; 4,5 и 6 м.

 

№24.основные сведения и виды тонкостенных пространственных ж/б покрытий

Тонкостенные пространственные конструкции очерчи­ваются в общем случае по кривым поверхностям.

применение для покрытий больших пролетов в таких зданиях и сооружениях, как ангары, стадионы, гаражи, сборочные цехи, рынки, концертные и спортивные залы, вокзальные и выставочные помещения и т. п.

В промышленных и гражданских зданиях тонкостен­ные пространственные покрытия применяются и при, меньших пролетах— 18—36 м.

Конструкция тонкостенного покрытия состоит из соб­ственно оболочки — тонкой криволинейной плиты и контурных элементов (диафрагм, бортовых балок, опорных колец и т. п.).

Все железобетонные тонкостенные пространственные конструкции можно разделить на две большие группы: оболочки одинарной кривизны и оболочки двоякой кривизны.

Оболочки одинарной кривизны делятся на цилиндрические, конические, коноидальные оболочки. К тонко­стенным пространственным конструкциям покрытий,относят также складки и шатры.

Оболочки двоякой кривизны делятся: на оболочки вращения с вертикальной осью — купола; выпуклые оболочки переноса на прямоугольном плане; вогнутые висячие оболочки на круглом или эллиптическом плане; выпукло-вогнутые (седловидные) оболочки; бочарные своды; волнистые своды, очертание которых в поперечном сечении может быть криволинейным или склад­чатым.

В тонкостенных пространственных конструкциях бла­годаря работе конструкции в обоих направлениям достигается лучшее использование материала и eго существенная экономия.

В железобетонных тонкостенных покрытиях необходимо стремиться к тому, чтобы бетон использовался в работе на сжатие по максимально большей части поверхности, так как растянутые части требуют расчетно­го армирования.

По технологии возведения тонкостенные пространст­венные конструкции делят на монолитные, сборные и сборно-монолитные.

Существенное влияние на развитие тонкостенных конструкций больших пролетов имело применение пред­варительного напряжения. Особым видом железобетонных оболочек являются армоцементные, отличающиеся большой насыщенностью тонкой арматурой (диаметром 0,5—2 мм) и приготов­ляемые на цементно-песчаном растворе (бесщебеночный бетон).

Армоцементные, преимущественно сборные оболочки имеют небольшую толщину (15—30 мм), сравнительно небольшую массу и экономичны по расходу цемента и, арматуры.

Арматурой служат специальные проволочные (тка­ные) сетки с мелкими ячейками (размером до 1 см), ук­ладываемые в 5—10 слоев.

№25.ж/б длинные цилиндрические оболочки

ЦИЛИНДРИЧЕСКИЕ ОБОЛОЧКИ

Покрытие в виде цилиндрической оболочки образу­ется из тонкой плиты (собственно оболочки), изогнутой по цилиндрической поверхности, усиленной по свобод­ным краям бортовыми элементами и опирающейся по торцам на диафрагмы (рис. 12.1).

Расстояние между осями опорных диафрагм l1 назы­вается пролетом оболочки, расстояние между бортовы­ми элементами l2— длиной волны. Стрелу подъема обо­лочки, считая от бортовых элементов, обозначают f, a включая бортовые элементы, — h(рис. 12.1,а).

Среди цилиндрических оболочек различают (рис. 12.1,6,в): однопролетные, многопролетные, одноволновые, многоволновые, гладкие, ребристые, усиленные по­перечными ребрами жесткости.

Цилиндрические оболочки выполняют монолитными или сборными (рис. 12.2). В зависимости от отношения пролета к длине волны цилиндрические оболочки делят на две группы: при l1\l2>—длинная оболочка, а при l1|l2<1 — короткая оболочка.

При отсутствии предварительного напряжения высо­ту оболочки рекомендуется принимать равной

Толщину плиты монолитных оболочек принимают равной , но не менее 5—6 см, а сбор­ных оболочек — .

1. Длинные оболочки в целом работают подобно балке пролетом l1 имеющей фигурное поперечное се­чение высотой h.

В отличие от обыкновенных балок массивного сече­ния тонкостенный открытый поперечный профиль длин­ной оболочки при ее изгибе деформируется. Этим де­формациям препятствуют бортовые элементы. Кроме того, в бортовых элементах размещается основная рас­тянутая арматура Диафрагмами длинных оболочек могут служить бал­ки, арки, рамы и фермы (

 

2. Складки. Складчатые покрытия (складки) обра­зуются из монолитно связанных между собой тонких плоских плит. По продольным краям складок, так же как в цилиндрических оболочках, устраивают бортовые элементы

Складчатые покрытия могут быть однопролетными;-мпогопролетными, одноволновыми и многоволновыми. В продольном направлении они опираются на диафраг­мы в виде балок или шпренгельных систем.

Ширина граней складки принимается равной 3— 3,5 м с тем, чтобы толщина граней была не более 10 см. Длину складки принимают равной l2=10... 12 м, а вы­соту- h= (1\7 -1\10)l1

В продольном направлении складки рассчитывают так же, как цилиндрические оболочки. По значениям изгибающих моментов, определяемых из расчета в про­дольном направлении как для однопролетной или мно­гопролетной балки, вычисляют площадь продольной растянутой арматуры как для балок соответствующего профиля.

Для подбора продольной арматуры и вычисления про­гибов сечение складки приводится к прямоугольному, тавровому или двутавровому, после чего его рассчитыва­ют по действующим нормам

Приведенную толщину стенки для приведенного се­чения

 

 

Продольную растянутую арматуру располагают в бор­товых элементах. В складках конструктивно устанавлива­ют также сжатую арматуру из стержней диаметром 5— 7 мм с шагом 20—25 см.

Для определения попереч­ных изгибающих моментов длинные одноволновые и мно­говолновые складки рассчиты­вают в поперечном направле­нии как многопролетные пли­ты с опорами в ребрах (мес­тах переломов). Нагрузку считают равномерно распре­деленной.

 

№26. ж\б складки

Складки. Складчатые покрытия (складки) обра­зуются из монолитно связанных между собой тонких плоских плит. По продольным краям складок, так же как в цилиндрических оболочках, устраивают бортовые элементы

Складчатые покрытия могут быть однопролетными;-мпогопролетными, одноволновыми и многоволновыми. В продольном направлении они опираются на диафраг­мы в виде балок или шпренгельных систем.

Ширина граней складки принимается равной 3— 3,5 м с тем, чтобы толщина граней была не более 10 см. Длину складки принимают равной l2=10... 12 м, а вы­соту- h= (1\7 -1\10)l1

В продольном направлении складки рассчитывают так же, как цилиндрические оболочки. По значениям изгибающих моментов, определяемых из расчета в про­дольном направлении как для однопролетной или мно­гопролетной балки, вычисляют площадь продольной растянутой арматуры как для балок соответствующего профиля.

Для подбора продольной арматуры и вычисления про­гибов сечение складки приводится к прямоугольному, тавровому или двутавровому, после чего его рассчитыва­ют по действующим нормам (рис. 12.7,6, в).

Приведенную толщину стенки для приведенного се­чения

 

 

Продольную растянутую арматуру располагают в бор­товых элементах. В складках конструктивно устанавлива­ют также сжатую арматуру из стержней диаметром 5— 7 мм с шагом 20—25 см.

Для определения попереч­ных изгибающих моментов длинные одноволновые и мно­говолновые складки рассчиты­вают в поперечном направле­нии как многопролетные пли­ты с опорами в ребрах (мес­тах переломов). Нагрузку считают равномерно распре­деленной.

Полученные из этого рас­чета отрицателоьные моментыв верхнем крайнем ребреАдля складок умножаются на поправочный коэффициент в зависимости от типа и размеров бортового элемента (табл. 12.1).

 

№27. ж\б купола

КУПОЛА

Железобетонные купола применяют для покрытий круглых в плане зданий и сооружений. В зависимости от очертания образующей купол может быть шаровым, ко­ническим, эллиптическим и др.

Купол — одна из наиболее рациональных и выгодней­ших форм пространственных тонкостенных конструкций. Их выполняют из монолитного и сборного железобетона. Монолитные купола выполняют преимущественно глад­кими, а сборные — ребристыми.

В зависимости от отношения стрелы подъема к диаметру опорного кольца Dразличают купола пологие, если f/D≤l/s и подъемистые, если f/D>l/s. Купол считается

Купол состоит из двух основных конструктивных эле­ментов: оболочки и опорного кольца. При наличии цент­рального проема в куполе устраивают верхнее кольцо.

Статически определимым опиранием купола является непрерывное по контуру шарнирно-подвижное опирание, совпадающее по направлению с касательной к оболочке (рис. 12.10, а).

При действии распределенных осесимметричных на­грузок и статически определимом опирании в тонкостен­ных куполах, не имеющих изломов в образующих, изги­бающие моменты и поперечные силы малыми и ими можнопренебречь.

Чтобы определить усилия в оболочке купола, рас­смотрим напряженное состояние элемента, выделенного из купола двумя меридиональными и двумя кольцевыми сечениями. В сечениях действуют N1, N2, S— соответст­венно меридиональное, кольцевое и касательное усилия, отнесенные к единице длины сечения (рис. 12.10, в).

При осесимметричной нагрузке усилия S = 0, а уси­лия N1 и N2определяются из условий статики как функ­ции только широты φ.

Для определения N1 и N2есть два уравнения статики, поэтому сама оболочка при статически определимом опирании и осесимметричной распределенной нагрузке является статически определимой конструкцией.

Исходя из условия Z=0, равнодействующая сил N1 должна уравновешиваться равнодействующей



контурной зоне по конструктивным соображениям. При этом методе расчета по сравнению с расчетом по безмо-ментной теории и моментной теории упругих куполов количество арматуры в опорном кольце оказывается меньше.

Купола армируют в соответствии с усилиями, полу­ченными в результате расчета. Оболочки пологих купо­лов, за исключением приопорных зон, сжаты; их арми­руют конструктивно одиночной сеткой из стержней d— = 5...6 мм с шагом 15—20 см. У контура ставят дополнительную меридиональную арматуру (обычно из стерж­ней d—6...8 мм) для восприятия опорного момента Miи дополнительную кольцевую арматуру для восприятия местных растягивающих кольцевых усилий N$ (рис. 12.11,а).

Рабочую арматуру опорного кольца, рассчитываемо­го на центральное растяжение, ставят в виде кольцевых стержней d=20...30 мм, которые соединяют сваркой (рис. 12.11,6).

Ребристые сегментные криволинейные элементы ку­полов опираются с одной стороны на опорное кольцо, а с другой — на верхнее кольцо, поддерживаемое времен­ными лесами.Большой интерес представляет конструкция пологого сферического купола, опорное кольцо которого выполня­ют из монолитного железобетона, а остальную часть со­бирают из ступенчатых

 

 

№28.ж\боболочки на прямоугольном плане

ВЫПУКЛЫЕ ПОЛОГИЕ ОБОЛОЧКИ НА ПРЯМОУГОЛЬНОМ ПЛАНЕ

Железобетонные выпуклые оболочки на прямоуголь­ном плане — весьма прогрессивные конструкции. Обо­лочки можно получить из сферического купола, который срезан четырьмя вертикальными плоскостями. Эти вер­тикальные плоскости образуют в плане прямоугольник, вписанный в основание купола.

Конструкция состоит из тонкостенной плиты двоякой кривизны и четырех диафрагм, располагаемых по кон­туру (рис. 12.13, а). Диафрагмы опираются концами на колонны; возможно опирание оболочки и по всему конту­ру на стены.

В пологих оболочках используют поверхность эллип­тического параболоида и круговую поверхность переноса.

Оболочки двоякой кривизны строят преимущественно пологими, т. е. с отношением стрелы подъема в каждом направлении к соответствующему размеру плана до 1: 5.

Оболочки на прямоугольном плане выполняют из мо­нолитного, сборного и сборно-монолитного железобе­тона.

Усилия, действующие на бесконечно малый элемент, выделенный из оболочки, можно разделить на две груп­пы. К первой группе относятся усилия, характеризую­щие безмоментное состояние оболочки: продольные уси­лия NltN2и сдвигающие S. Усилия этой группы всегда действуют в оболочках.

Вторая группа усилий (рис. 12.13, в) —изгибающие моменты M1, М2, поперечные силы Q1, Q2и крутящие моменты Я — характеризуют моментное состояние обо­лочки.

Усилия, относящиеся ко второй группе, могут отсут­ствовать, если соблюдаются следующие условия: края оболочки имеют свободу горизонтальных перемещений и поворота; внешняя нагрузка сплошная, распределенная, с плавным изменением интенсивности; плита оболочки не имеет отверстий, резких изменений толщины, изломов и т. д. Как правило, эти требования при проектировании оболочек могут быть удовлетворены по всей их площади, за исключением приопорных частей. Поэтому в таких оболочках лишь узкая приопорная полоса подвергается действию изгибающих моментов, а 80—90% площади оболочки обычно испытывает лишь действие продольных сжимающих сил.

Для облегчения вычислений усилий NltN2и S состав­лены таблицы.

После определения NitN2и S главные усилия и углы их наклона к горизонтальной оси находят по формулам:

 

Поскольку оболочка испытывает в основном сжима­ющие усилия, ее армируют на большей части площади конструктивной сеткой, а в приконтурных зонах ставят дополнительную арматуру.

По сдвигающим усилиям S рассчитывают связи обо­лочки с диафрагмой и саму диафрагму.

№29 Ж\б арки

АРКИ

При пролетах промышленных зданий более 36 м ар­ки становятся экономичными и могут применяться наря­ду с фермами.

Железобетонные арки бывают трехшарнирными, двухшарнирными и бесшарнирными (рис. 11.13, а). Сборные арки выполняют обычно двухшарнирными, а при больших пролетах — трехшарнирными (из двух по­луарок).

Распор арки воспринимается затяжкой или же пере­дается на фундаменты и грунты основания.

До начала статического расчета ориентировочно в за­висимости от пролета арки назначают размеры ее попе­речного сечения. Далее выбирают очертание оси арки.

Распространенные арки имеют стрелу подъема

f = (1/5...1/8)/. Наиболее выгодно очертание оси арки, совпадающее с кривой давления. При стреле подъема f=(l/4—l/2) l

такой кривой приближенно будет парабола, а при f≤1\4l— окружность.

Арки преимущественно делают из сборных элемен­тов, напрягаемой затяжки и подвесок (рис. 11.13,в).

По железобетонным аркам укладывают такие же пли­ты настила, как и по фермам.

Арки рассчитывают на сплошную равномерно рас­пределенную нагрузку от массы покрытия, одностороннюю нагрузку от снега на половине пролета арки и сосредоточенную нагрузку от подвесного транспорта.

Двухшарнирная арка с затяжкой один раз статичес­ки неопределима, и для ее расчета необходимо предвари­тельно задаться сечением арки. Высота сечения арки может быть принята равной

H=(1/зо-1/4о) lа площадь сечения затяжки подбирают по распору:

Для пологой двухшарнирной арки распор Н с учетом упругого удлинения затяжки определяется по ф-лам: при равномерно распределенной нагрузке по всем пролету

Где φ— угол между касательной к оси арки в рассматриваемом сечении и горизонтальной прямой (рис. 11.13, г)

; Qб— балочная по­перечная сила.

Сечения продольной арматуры арки подбирают по формулам внецентренного сжатия.

Арки рассчитывают также на усилия, возникающие при изготовлении (в том числе при натяжении затяжки), транспортировании и монтаже.

№30. основные типы расчета многоэтажных зданий с ж\б каркасом, диафрагмами и ядрами жесткости на горизонтальной нагрузке

Плоские рамы многоэтажного здания, располагаемые с определенным шагом и связанные перекрытиями, обра­зуют пространственный каркас, имеющий длину, равную расстоянию между температурными швами или наруж­ными стенами. Такой пространственный каркас называ­ют блоком рам.

Для расчета с практически достаточной точностью блок рам расчленяют на отдельные плоские рамы.

Вертикальные постоянные и временные нагрузки, а также горизонтальные ветровые нагрузки

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...