Основные результаты и выводы
⇐ ПредыдущаяСтр 3 из 3
Настоящая работа обобщает результаты комплексного исследования механизма и кинетики электродных процессов в ионной и электронной подсистемах в низкотемпературных твердых электролитах с использованием импульсных методов. Важнейшим результатом работы является получение новых и уточнение полученных другими исследователями количественных характеристик указанных электродных процессов и разработка на этой основе обобщенного подхода к механизму и кинетике электродных реакций на межфазных границах электрохимических преобразователей энергии. Основные черты результаты работы могут быть обобщены в следующих выводах: 1. Иновалентные примеси, обуславливающие появление примесных электронных дефектов в низкотемпературных твердых электролитах, возникают при синтезе электролитов и их природа в основном оггоеделяется составом атмосферы при синтезе. Потенциал индифферентного электрода зависит от концентрации потенциалопределяющих иновалентных примесей. Величина этого потенциала является основной характиристикой качества электролита. 2. Механизм и кинетика электродных реакций в медьпроводящих и серебропроводящих электролитах качественно идентичны и различаются лишь численными значениями кинетических параметров. 3. В низкотемпературных твердофазных системах параллельно могут идти реакции в ионной и электронной подсистемах. В ионной подсистеме происходит осаждение – растворение металла, по ионам которого осуществляется ионная проводимость электролига. В электронной подсистеме имеет место генерация – рекомбинация электронных дефектов (как правило, дырок). 4. Соотношение вкладов электронной и ионной подсистем в лимитирующую стадию определяется условиями поверхностных состояний контактирующих фаз в зависимости от поляризации.
5. Реакции в электронной подсистеме сопровождаются изменением стехиометрии приэлектродного слоя электролита. При значительной анодной поляризации нестехиометрия достигает границы гомогенности электролита и на электродах выпадают резистивные фазы галогенидов. 6. На блокирующих электродах (индифферентном при анодной поляризации и обратимом металлическом с оксидным слоем при потенциалах вблизи равновесного) имеет место только реакция в электронной подсистеме, что позволяет исследовать на указанных электродах кинетические параметры этой реакции без маскирующего влияния реакции в ионной подсистеме. Лимитирующей стадией реакции в электронной подсистеме является замедленная диффузия электрона. 7. При высоких катодных потенциалах на индифферентном электроде, а также катодных и анодных потенциалах на обратимом металлическом электроде (после разрушения блокирующего слоя оксидов) параллельно реакции в электронной подсистеме начинается реакция осаждения – растворения металла в ионной подсистеме. Последняя реакция характеризуется намного большими токами (на два – три порядка величин) и маскирует протекание первой реакции. Однако в этих условиях наличие реакции в электронной подсистеме подтверждается обнаружением независимыми методами слоев галогенидов на поверхности электродов. 8. При потенциалах 30… 100 мВ лимитирующей стадией процесса осаждения – растворения металла на обратимом металлическом электроде является процесс зарождения и разрастания центров кристаллизации и растворения. Основные параметры процесса растворения серебряного электрода: свободная граничная энергия ступеней растворения и критическая работа образования центров растворения и количество атомов в критическом центре растворения практически совпадают с аналогичными величинами для поликристаллических серебряных электродов в водных растворах электролитов. Следовательно, процесс образования центров растворения, во всяком случае, на серебряных электродах практически не зависит от природы электролита и определяется в основном физико-химическими свойствами серебра. При перенапряжениях более 100… 120 мВ.
9. Применение импульсных потенциостатического и гальваностатического методов позволило перейти от качественных к количественным характеристикам электродных процессов. Величины кинетических параметров для одних и тех же электрохимических реакций, полученные этими методами, хорошо совпадают друг с другом. Следовательно, применение импульсных методов приводит к улучшению воспроизводимости результатов измерений и, соответственно, получению более точных значений указанных параметров. 10. Разработаны методики выращивания монокристаллов медьпроводящих электролитов, которые позволили получение высокочистых электролитов с концентрацией Си, перспективных для применения в производстве электрохимических преобразователей энергии. 11. Разработаны способы получения активных масс серебряного электрода и методики изготовления электродов из этих масс, удовлетворяющие условиям массового производства. Удельная емкость электродов достигает 165 А час/кг при токе разряда 10 мА/см2. 12. Результаты разработок внедрены в ОАО «Литий – элемент» (г. Саратов), а также НИИ ГИРИКОНД (г. Санкт-Петербург) при промышленном производстве ионисторов. Все вышеизложенное позволяет считать совокупность проведенных исследований существенным вкладом в электрохимию твердофазных систем, заключающемся в установлении влияния поверхностных состояний контактирующих фаз в зависимости от поляризации на механизм и кинетику электродных процессов в ионной и электронной подсистемах и разработке на этой основе общего подхода к кинетике электродных реакций на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|