Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Работа с полноцветными, полутоновыми и бинарными изображениями. Построение гистограмм




 

Задание

1. Загрузить полноцветное полутоновое изображение.

2. Получить из него полутоновое.

3. Получить из полутонового бинарное.

4. Получить из бинарного полутоновое.

 

Теоретические сведения

Получение полутоновых изображений из цветных

Для получения полутонового изображения из цветного был испльзован наиболее простой метод, заключается в определении значения яркости пикселя как среднего яркостей по каналам R, G, и B.

Получение черно-белых изображений из полутоновых

Основная задача бинаризации изображений заключается в правильном выборе порога квантования, так как ошибки в его выборе приводят к различного вида помехам, которые маскируют полезные объекты и формируют ложные объекты. Порог квантования выбирается таким образом, чтобы свести к минимуму искажения структуры изображения. В одних случаях он устанавливается заранее так, чтобы минимизировать ошибки квантования, а в других - формируется автоматически в процессе обработки изображения различными локальными операторами: выбором максимального значения функции яркости изображения; разделом двух основных пиков на гистограмме яркости; усреднением функции яркости в окне, корреляционным и последовательным анализом и др. Другой подход к бинаризации изображений основан на выделении границ областей и заполнении их внутренних участков единичными элементами. Конкретный выбор той или иной операции бинаризации изображений зависит от их оптических свойств, требуемой точности и скорости аппроксимации.

Пусть {аij} - полутоновое изображение, t-порог и b0, bi - два бинарных значения. Результат порогового разделения - бинарное изображение, полученное следующим образом:

 

 

Как видно, основной задачей является выбор значения t с помощью некоторого критерия. Это значение может выбираться как одинаковым для всего изображения, так и различным для различных его частей. Если значения объектов и фона режима достаточно однородны по всему изображению, то может использоваться одно пороговое значение для всего изображения. Использование единственного значения порога для всех пикселей изображения называется глобальным пороговым разделением.

Однако для многих сканированных изображений глобальное пороговое значение не может использоваться из-за неоднородностей внутри областей фона и объектов. Для этого типа изображения требуются различные пороговые значения для различных частей изображения. Использование различных пороговых значений для различных частей изображения называется адаптивным или локальным пороговым разделением.

Глобальное пороговое разделение

Существует много способов выбора порогового значения. Один из наиболее популярных и широко используемых - метод мод, в котором используется гистограмма яркостей пикселей на изображении. Для изображения с хорошо отличимыми объектами и фоновым режимом гистограмма будет иметь два различных пика (рис).


 

Впадина между пиками может быть найдена как минимум между двумя максимумами, а соответствующее ему значение интенсивности выбирается как порог, который лучше всего разделяет два пика.

Имеется ряд недостатков в методе глобального порогового разделения, основанном на форме распределения яркостей:

Изображение не всегда содержит хорошо различимые объект и фон из-за недостаточного контраста и шума.

В случае редко расположенных графических объектов, каковыми и являются графические изображения, пик, соответствующий объектам, будет значительно меньше пика, соответствующего фону.

Такое различие нередко затрудняет нахождение долины между двумя пиками. Кроме того, надежные модовые методы определения глобального порога сами по себе являются отдельной, проблемой.

Существует ряд методов, в которых порог не определяется непосредственно, а гистограмма преобразуется в гистограмму с более глубокими впадинами и более острыми пиками так, чтобы стало возможным определение порога. Общая особенность этих методов -то, что новая гистограмма получена с помощью весовых коэффициентов, применяемых к пикселям, в соответствии с локальными свойствами изображения. Кроме того, предполагается, что изображение состоит из фона и объектов, каждый из которых имеет унимодальное распределение яркости.


Рис. Гистограмма цветного изображения

 

Рис. Преобразование цветного изображения в полутоновое.

 


Рис. Преобразование полутонового изображения в бинарное.

 

Рис. Преобразование бинарного изображения в полутоновое

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...