Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Перед началом матча по футболу судья бросает монету, чтобы определить, какая из команд будет первой владеть мячом. Команда «Байкал» играет по очереди с командами

Теория вероятностей

Классическое определение вероятности
Вероятностью события A называется отношение числа благоприятных для A исходов к числу всех равновозможных исходов: Р (А) =
где n — общее число равновозможных исходов, m — число исходов, благоприятствующих событию A.
Противоположные события
Событие, противоположное событию A, обозначают Ā. При проведении испытания всегда происходит ровно одно из двух противоположных событий и
Объединение несовместных событий
 Два события A и B называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию A, так и событию B.
 Если события A и B несовместны, то вероятность их объединения равна сумме вероятностей событий A и B: P(A U B) =P(A) + P(B)

Пересечение независимых событий
 Два события A и B называют независимыми, если вероятность каждого из них не зависит от появления или непоявления другого события.
 Событие C называют пересечением событий A и B (пишут C = A∩B), если событие C означает, что произошли оба события A и B.
Если события A и B независимы, то вероятность их пересечения равна произведению вероятностей событий A и B:
P(A∩B) = P(A) • P(B)

Формула сложения вероятностей совместных событий:

P(A U B) =P(A) + P(B) P(A∩B)

1. Из 1000 собранных на заводе телевизоров 5 штук бракованных. Эксперт проверяет один наугад выбранный телевизор из этой 1000. Найдите вероятность того, что проверяемый телевизор окажется бракованным.
Решение. При выборе телевизора наугад возможны 1000 исходов, событию A «выбранный телевизор — бракованный» благоприятны 5 исходов. По определению вероятности P(A) = 5÷1000 = 0,005.  Ответ: 0,005.

2. В урне 9 красных, 6 жёлтых и 5 зелёных шаров. Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется жёлтым?  Решение. Общее число исходов равно числу шаров: 9 + 6 + 5 = 20. Число исходов, благоприятствующих данному событию, равно 6. Искомая вероятность равна 6÷20 = 0,3. Ответ: 0,3.

3. Петя, Вика, Катя, Игорь, Антон, По­ли­на бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру дол­жен будет маль­чик.

Ре­ше­ние.Ве­ро­ят­ность со­бы­тия равна от­но­ше­нию ко­ли­че­ства бла­го­при­ят­ных слу­ча­ев к ко­ли­че­ству всех слу­ча­ев. Бла­го­при­ят­ными слу­ча­ями яв­ля­ют­ся 3 слу­чая, когда игру на­чи­на­ет Петя, Игорь или Антон, а ко­ли­че­ство всех слу­ча­ев 6. По­это­му ис­ко­мое от­но­ше­ние равно 3:6=0,5. Ответ: 0,5.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Обозначим через А событие «команда России во второй группе». Тогда количество благоприятных событий m = 4 (четыре карточки с номером 2), а общее число равновозможных событий n = 16 (16 карточек) по определению вероятности Р= 4: 16 = 0,25. Ответ:0,25

5. В лыж­ных гон­ках участ­ву­ют 11 спортс­ме­нов из Рос­сии, 6 спортс­ме­нов из Нор­ве­гии и 3 спортс­ме­на из Шве­ции. По­ря­док, в ко­то­ром спортс­ме­ны стар­ту­ют, опре­де­ля­ет­ся жре­би­ем. Най­ди­те ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии.

Ре­ше­ние. Всего спортс­ме­нов 11 + 6 + 3 = 20 че­ло­век. По­это­му ве­ро­ят­ность того, что пер­вым будет стар­то­вать спортс­мен не из Рос­сии равна 9:20 = 0,45. Ответ: 0,45.

 

Ответ: 0,45

55555 666 6. На каж­дые 1000 элек­три­че­ских лам­по­чек при­хо­дит­ся 5 бра­ко­ван­ных. Ка­ко­ва ве­ро­ят­ность ку­пить ис­прав­ную лам­поч­ку?

Ре­ше­ние.На каж­дые 1000 лам­по­чек при­хо­дит­ся 5 бра­ко­ван­ных, всего их 1005. Ве­ро­ят­ность ку­пить ис­прав­ную лам­поч­ку будет равна доле ис­прав­ных лам­по­чек на каж­дые 1005 лам­по­чек, то есть 1000:1005=0,995. Ответ: 0,995.

 

7. В группе туристов 8 человек. С помощью жребия они выбирают шестерых человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин? 6: 8= 0,75.

Ответ: 0,947888 8. В чем­пи­о­на­те по фут­бо­лу участ­ву­ют 16 ко­манд, ко­то­рые же­ре­бьев­кой рас­пре­де­ля­ют­ся на 4 груп­пы: A, B, C и D. Ка­ко­ва ве­ро­ят­ность того, что ко­ман­да Рос­сии не по­па­да­ет в груп­пу A?

Ре­ше­ние. Каж­дая ко­ман­да по­па­дет в груп­пу с ве­ро­ят­но­стью 0,25. Таким об­ра­зом, ве­ро­ят­ность того, что ко­ман­да не по­па­да­ет в груп­пу равна 1-0,25=0,75. Ответ:0,75

9. На турнир по шахматам прибыло 26 участников в том числе Коля и Толя. Для проведения жеребьевки первого тура участников случайным образом разбили на две группы по 13 человек. Найти вероятность того, что Коля и Толя попадут в разные группы. Решение. Всего 26 мест. Пусть Коля займет случайное место в любой группе. Останется 25 мест, из них в другой группе 13. Исходом считаем выбор места для Толи. Благоприятных исходов 13. Р=13/25 = 0,52. Ответ:0,52

10. В классе 16 учащихся, среди них два друга —Вадим и Сергей. Учащихся случайным образом разбивают на 4 равные группы. Найдите вероятность того, что Вадим и Сергей окажутся в одной группе. Решение. Если Сергею первому досталось некоторое место, то Олегу остаётся 15 мест. Из них 3 — в той же группе, где Сергей. Искомая вероятность равна 3/15. Ответ:0,2

11. В классе 21 учащийся, среди них два друга — Вадим и Олег. Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе. Решение. Пусть один из друзей находится в некоторой группе. Вместе с ним в группе окажутся 6 человек из 20 оставшихся учащихся. Вероятность того, что друг окажется среди этих 6 человек, равна 6: 20 = 0,3. Ответ: 0,3

12. Перед началом первого тура чемпионата по настольному теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 16 спортсменов, среди которых 7 участников из России, в том числе Платон Карпов. Найдите вероятность того, что в первом туре Платон Карпов будет играть с каким-либо спортсменом из России? 6:15=0,4. Ответ:0,4.

13. Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шашистов, среди которых 3 участника из России, в том числе Василий Лукин. Найдите вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России? 2: 25=0,08. Ответ: 0,08.

14. В классе 26 учащихся, среди них два друга — Сергей и Андрей. Учащихся случайным образом разбивают на 2 равные группы. Найдите вероятность того, что Сергей и Андрей окажутся в одной группе. Ответ 12: 25 = 0,48.

15. В классе 21 ученик, среди них 2 друга – Тоша и Гоша. На уроке физкультуры класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Тоша и Гоша попали в одну группу. Ответ 6: 20 = 0,3.

16. В классе 21 учащийся, среди них две подруги - Аня и Нина. Класс случайным образом делят на семь групп, по 3 человека в каждой. Найдите вероятность того, что Аня и Нина окажутся в одной группе. Ответ: 2: 20 = 0,1.

17. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 7, но не дойдя до отметки 1. Ответ. 6: 12= 0,5 (6 делений между 12 и 7, всего 12 делений)

18. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 6, но не дойдя до отметки 9 часов. 3:12 = 0,25

При решении задач с монетами число всех возможныхисходов можно посчитать по формуле п=2ª, где α –количество бросков

19. В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют 2 раза. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно 1 раз.

Ре­ше­ние. Всего воз­мож­ны че­ты­ре ис­хо­да: решка-решка, решка-орёл, орёл-решка, орёл-орёл. Орёл вы­па­да­ет ровно один раз в двух слу­ча­ях, по­это­му ве­ро­ят­ность того, что орёл вы­па­дет ровно один раз равна 2:4=0,5. Ответ: 0,5.

20. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу. Ответ: 1:4=0,25

21. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл не выпадет ни разу. Решение. 1:8=0,125 Ответ. 0,125

22. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орёл выпадет ровно 2 раза. Решение. Составим список возможных вариантов. Бросают 2 раза может выпасть О - Орел, Р - Решка:
ОО, ОР, РО, РР. Всего 4 исхода из них только один случай удовлетворяет условию. Вероятность (P) = 1 / 4 = 0.25
. Ответ: 0.25

23. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка не выпадет ни разу. Решение. Всего исходов = 16, благоприятных 1 (ОООО). 1:16 = 0,0625. Ответ: 0,0625

При решении задач с кубиками число всех возможныхисходов можно посчитать по формуле п=6ª, где α –количество бросков

24. Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии иг­раль­но­го ку­би­ка (пра­виль­ной кости) вы­па­дет не­чет­ное число очков. Ре­ше­ние.При бро­са­нии ку­би­ка рав­но­воз­мож­ных шесть раз­лич­ных ис­хо­дов. Со­бы­тию "вы­па­дет нечётное число очков" удо­вле­тво­ря­ют три слу­чая: когда на ку­би­ке вы­па­да­ет 1, 3 или 5 очков. По­это­му ве­ро­ят­ность того, что на ку­би­ке вы­па­дет нечётное число очков равна 3:6=0,5. Ответ: 0,5.

25. Опре­де­ли­те ве­ро­ят­ность того, что при бро­са­нии ку­би­ка вы­па­ло число очков, не боль­шее 3.

Ре­ше­ние.При бро­са­нии ку­би­ка рав­но­воз­мож­ны шесть раз­лич­ных ис­хо­дов. Со­бы­тию "вы­па­дет не боль­ше трёх очков" удо­вле­тво­ря­ют три слу­чая: когда на ку­би­ке вы­па­да­ет 1, 2, или 3 очка. По­это­му ве­ро­ят­ность того, что на ку­би­ке вы­па­дет не боль­ше трёх очков равна 3:6=0,5 О твет: 0,5. Ответ: 0,5Ответ: 0,5

26. 27 22 Иг­раль­ную кость бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что оба раза вы­па­ло число, боль­шее 3.

Ре­ше­ние.При бро­са­нии ку­би­ка 6²= 36 раз­лич­ных ис­хо­дов. Со­бы­тию "вы­па­дет боль­ше трёх очков" удо­вле­тво­ря­ют три слу­чая: когда на ку­би­ке вы­па­да­ет 4, 5, или 6 очков, благоприятных исходов 9 (4,4; 4,5; 4,6; 5,4; 5,5; 5,6; 6,4; 6,5; 6,6.) Ответ: 9: 36 = 0,25.

27. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых. Ре­ше­ние.При бро­са­нии ку­би­ка 6³= 216 раз­лич­ных ис­хо­дов, благоприятных 14. 14: 216 = 0,07. Ответ: 0,07.

Ответ: 0,5

28. Коля вы­би­ра­ет трех­знач­ное число. Най­ди­те ве­ро­ят­ность того, что оно де­лит­ся на 5.

Ре­ше­ние. Всего трех­знач­ных чисел 900. На пять де­лит­ся каж­дое пятое их них, то есть таких чисел 900:5=180. Ве­ро­ят­ность того, что Коля вы­брал трех­знач­ное число, де­ля­ще­е­ся на 5, опре­де­ля­ет­ся от­но­ше­ни­ем ко­ли­че­ства трех­знач­ных чисел, де­ля­щих­ся на 5, ко всему ко­ли­че­ству трех­знач­ных чисел: 180:900=0,2. Ответ: 0,2.Ответ: 0,2

 

Ответ: 0,85

Ответ: 0,25Ответ: 0,75 29. Ответ: 0,052929 Для эк­за­ме­на под­го­то­ви­ли би­ле­ты с но­ме­ра­ми от 1 до 50. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет од­но­знач­ный номер?

Ре­ше­ние.Всего было под­го­тов­ле­но 50 би­ле­тов. Среди них 9 были од­но­знач­ны­ми. Таким об­ра­зом, ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет од­но­знач­ный номер равна 9:50=0,18. Ответ: 0,18.

 

Ответ: 0,18

30. В мешке со­дер­жат­ся же­то­ны с но­ме­ра­ми от 5 до 54 вклю­чи­тель­но. Ка­ко­ва ве­ро­ят­ность, того, что из­вле­чен­ный на­у­гад из мешка жетон со­дер­жит дву­знач­ное число?

Ре­ше­ние. Всего в мешке же­то­нов - 50. Среди них 45 имеют дву­знач­ный номер. Таким об­ра­зом, ве­ро­ят­ность, того, что из­вле­чен­ный на­у­гад из мешка жетон со­дер­жит дву­знач­ное число равна 45: 50 = 0,9. Ответ: 0.9.

Ответ: 0,9

31. Ответ: 0,013

313133333 Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на 3? 3: 10 = 0,3. Ответ: 0,3.

Противоположные события.

32. Ве­ро­ят­ность того, что новая ша­ри­ко­вая ручка пишет плохо (или не пишет), равна 0,19. По­ку­па­тель в ма­га­зи­не вы­би­ра­ет одну такую ручку. Най­ди­те ве­ро­ят­ность того, что эта ручка пишет хо­ро­шо.

Ре­ше­ние. Ве­ро­ят­ность того, что ручка пишет хо­ро­шо, равна 1 − 0,19 = 0,81. Ответ: 0,81.

 

Ответ: 0,81

3333 33. Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже 36,8°C равна 0,87. Найдите вероятность того, что в случайный момент времени у здорового человека температура тела окажется 36,8°C или выше. Ответ.1-0,87=0,13

34. При из­го­тов­ле­нии под­шип­ни­ков диа­мет­ром 67 мм ве­ро­ят­ность того, что диа­метр будет от­ли­чать­ся от за­дан­но­го не боль­ше, чем на 0,01 мм, равна 0,965. Най­ди­те ве­ро­ят­ность того, что слу­чай­ный под­шип­ник будет иметь диа­метр мень­ше чем 66,99 мм или боль­ше чем 67,01 мм.

Ре­ше­ние.По усло­вию, диа­метр под­шип­ни­ка будет ле­жать в пре­де­лах от 66,99 до 67,01 мм с ве­ро­ят­но­стью 0,965. По­это­му ис­ко­мая ве­ро­ят­ность про­ти­во­по­лож­но­го со­бы­тия равна 1 − 0,965 = 0,035. Ответ: 0,035.

Несовместные и независимые события. 35. На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся одна за­да­ча из сбор­ни­ка. Ве­ро­ят­ность того, что эта за­да­ча по теме «Углы», равна 0,1. Ве­ро­ят­ность того, что это ока­жет­ся за­да­ча по теме «Па­рал­ле­ло­грамм», равна 0,6. В сбор­ни­ке нет задач, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся за­да­ча по одной из этих двух тем. Ре­ше­ние. Сум­мар­ная ве­ро­ят­ность не­сов­мест­ных со­бы­тий равна сумме ве­ро­ят­но­стей этих со­бы­тий: P=0,6+ 0,1 = 0,7. Ответ: 0,7.

36. Ве­ро­ят­ность того, что на тесте по био­ло­гии уча­щий­ся О. верно решит боль­ше 11 задач, равна 0,67. Ве­ро­ят­ность того, что О. верно решит боль­ше 10 задач, равна 0,74. Най­ди­те ве­ро­ят­ность того, что О. верно решит ровно 11 задач.

Ре­ше­ние. Рас­смот­рим со­бы­тия A = «уча­щий­ся решит 11 задач» и В = «уча­щий­ся решит боль­ше 11 задач». Их сумма — со­бы­тие A + B = «уча­щий­ся решит боль­ше 10 задач». Со­бы­тия A и В не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий: P(A + B) = P(A) + P(B). Тогда, ис­поль­зуя дан­ные за­да­чи, по­лу­ча­ем: 0,74 = P(A) + 0,67, от­ку­да P(A) = 0,74 − 0,67 = 0,07. Ответ: 0,07.

37. Вероятность того, что на тесте по химии учащийся П. верно решит больше 8 задач, равна 0,48. Вероятность того, что П. верно решит больше 7 задач, равна 0,54. Найдите вероятность того, что П. верно решит ровно 8 задач. Решение. Вероятность решить несколько задач складывается из суммы вероятностей решить каждую из этих задач. Больше 8: решить 9-ю, 10-ю... Больше 7: решить 8-ю, 9-ю, 10-ю...Вероятность решить 8-ю = 0,54-0,48=0,06. Ответ:0.06

38. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет меньше 4? Ответ: 4: 10 = 0,4.

39. Би­ат­ло­нист пять раз стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,8. Най­ди­те ве­ро­ят­ность того, что би­ат­ло­нист пер­вые три раза попал в ми­ше­ни, а по­след­ние два про­мах­нул­ся. Ре­зуль­тат округ­ли­те до сотых.

Ре­ше­ние.По­сколь­ку би­ат­ло­нист по­па­да­ет в ми­ше­ни с ве­ро­ят­но­стью 0,8, он про­ма­хи­ва­ет­ся с ве­ро­ят­но­стью 1 − 0,8 = 0,2. Cобы­тия по­пасть или про­мах­нуть­ся при каж­дом вы­стре­ле не­за­ви­си­мы, ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию их ве­ро­ят­но­стей. Тем самым, ве­ро­ят­ность со­бы­тия «попал, попал, попал, про­мах­нул­ся, про­мах­нул­ся» равна 0,8•0,8•0,8•0,2•0,2=0,02048. Ответ:0.02048.

Ответ: 0,02

3333 По­ме­ще­ние осве­ща­ет­ся фонарём с двумя лам­па­ми. Ве­ро­ят­ность пе­ре­го­ра­ния лампы в те­че­ние года равна 0,3. Най­ди­те ве­ро­ят­ность того, что в те­че­ние года хотя бы одна лампа не пе­ре­го­рит.

Ре­ше­ние.Най­дем ве­ро­ят­ность того, что пе­ре­го­рят обе лампы. Эти со­бы­тия не­за­ви­си­мые, ве­ро­ят­ность их про­из­ве­де­ния равно про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий: 0,3·0,3 = 0,09. Со­бы­тие, со­сто­я­щее в том, что не пе­ре­го­рит хотя бы одна лампа, про­ти­во­по­лож­ное. Сле­до­ва­тель­но, его ве­ро­ят­ность равна 1 − 0,09 = 0,91. Ответ: 0,91.

Ответ: 0,91

41. Ве­ро­ят­ность того, что ба­та­рей­ка бра­ко­ван­ная, равна 0,06. По­ку­па­тель в ма­га­зи­не вы­би­ра­ет слу­чай­ную упа­ков­ку, в ко­то­рой две таких ба­та­рей­ки. Най­ди­те ве­ро­ят­ность того, что обе ба­та­рей­ки ока­жут­ся ис­прав­ны­ми.

Ре­ше­ние.Ве­ро­ят­ность того, что ба­та­рей­ка ис­прав­на, равна 0,94. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий (обе ба­та­рей­ки ока­жут­ся ис­прав­ны­ми) равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий: 0,94·0,94 = 0,8836. Ответ: 0,8836.

Ответ: 0,8836

2. Если гросс­мей­стер А. иг­ра­ет бе­лы­ми, то он вы­иг­ры­ва­ет у гросс­мей­сте­ра Б. с ве­ро­ят­но­стью 0,52. Если А. иг­ра­ет чер­ны­ми, то А. вы­иг­ры­ва­ет у Б. с ве­ро­ят­но­стью 0,3. Гросс­мей­сте­ры А. и Б. иг­ра­ют две пар­тии, при­чем во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А. вы­иг­ра­ет оба раза.

Ре­ше­ние.Воз­мож­ность вы­иг­рать первую и вто­рую пар­тию не за­ви­сят друг от друга. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию их ве­ро­ят­но­стей: 0,52 · 0,3 = 0,156. Ответ: 0,156.

Ответ: 0,156

3. В ма­га­зи­не три про­дав­ца. Каж­дый из них занят с кли­ен­том с ве­ро­ят­но­стью 0,3. Най­ди­те ве­ро­ят­ность того, что в слу­чай­ный мо­мент вре­ме­ни все три про­дав­ца за­ня­ты од­но­вре­мен­но (счи­тай­те, что кли­ен­ты за­хо­дят не­за­ви­си­мо друг от друга).

Ре­ше­ние.Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий. По­это­му ве­ро­ят­ность того, что все три про­дав­ца за­ня­ты равна (0,3)³ = 0,027. Ответ: 0,027.

Ответ: 0,027Ответ: 0,062

Ответ: 0,19

55 44. Из рай­он­но­го цен­тра в де­рев­ню еже­днев­но ходит ав­то­бус. Ве­ро­ят­ность того, что в по­не­дель­ник в ав­то­бу­се ока­жет­ся мень­ше 20 пас­са­жи­ров, равна 0,94. Ве­ро­я­тность того, что ока­жет­ся мень­ше 15 пас­са­жи­ров, равна 0,56. Най­ди­те ве­ро­ят­ность того, что число пас­са­жи­ров будет от 15 до 19.

Ре­ше­ние.Рас­смот­рим со­бы­тия A = «в ав­то­бу­се мень­ше 15 пас­са­жи­ров» и В = «в ав­то­бу­се от 15 до 19 пас­са­жи­ров». Их сумма — со­бы­тие A + B = «в ав­то­бу­се мень­ше 20 пас­са­жи­ров». Со­бы­тия A и В не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий: P(A + B) = P(A) + P(B).

Тогда, ис­поль­зуя дан­ные за­да­чи, по­лу­ча­ем: 0,94 = 0,56 + P(В), от­ку­да P(В) = 0,94 − 0,56 = 0,38. Ответ: 0,38.

Ответ: 0,035

Ответ: 5

6 45. На эк­за­ме­не по гео­мет­рии школь­ни­ку достаётся один во­прос из спис­ка эк­за­ме­на­ци­он­ных во­про­сов. Ве­ро­ят­ность того, что это во­прос на тему «Впи­сан­ная окруж­ность», равна 0,2. Ве­ро­ят­ность того, что это во­прос на тему «Па­рал­ле­ло­грамм», равна 0,15. Во­про­сов, ко­то­рые од­но­вре­мен­но от­но­сят­ся к этим двум темам, нет. Най­ди­те ве­ро­ят­ность того, что на эк­за­ме­не школь­ни­ку до­ста­нет­ся во­прос по одной из этих двух тем.

Ре­ше­ние.Ве­ро­ят­ность суммы двух не­сов­мест­ных со­бы­тий равна сумме ве­ро­ят­но­стей этих со­бы­тий: 0,2 + 0,15 = 0,35.

Ответ: 0,35.

 

Ответ: 0,35

77 46.Ве­ро­ят­ность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше года, равна 0,97. Ве­ро­ят­ность того, что он про­слу­жит боль­ше двух лет, равна 0,89. Най­ди­те ве­ро­ят­ность того, что он про­слу­жит мень­ше двух лет, но боль­ше года.

Ре­ше­ние.Пусть A = «чай­ник про­слу­жит боль­ше года, но мень­ше двух лет», В = «чай­ник про­слу­жит боль­ше двух лет», С = «чай­ник про­слу­жит ровно два года», тогда A + B + С = «чай­ник про­слу­жит боль­ше года». Со­бы­тия A, В и С не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий. Ве­ро­ят­ность со­бы­тия С, со­сто­я­ще­го в том, что чай­ник вый­дет из строя ровно через два года — стро­го в тот же день, час и се­кун­ду — равна нулю. Тогда: P(A + B+ С) = P(A) + P(B)+ P(С)= P(A) + P(B)

от­ку­да, ис­поль­зуя дан­ные из усло­вия, по­лу­ча­ем 0,97 = P(A) + 0,89.Тем самым, для ис­ко­мой ве­ро­ят­но­сти имеем: P(A) = 0,97 − 0,89 = 0,08. Ответ: 0,08.

Ответ: 0,08

Ответ: 0,32

47. В Вол­шеб­ной стра­не бы­ва­ет два типа по­го­ды: хо­ро­шая и от­лич­ная, причём по­го­да, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Из­вест­но, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и се­год­ня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хо­ро­шая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная по­го­да.

Ре­ше­ние.Для по­го­ды на 4, 5 и 6 июля есть 4 ва­ри­ан­та: ХХО, ХОО, ОХО, ООО (здесь Х — хо­ро­шая, О — от­лич­ная по­го­да). Най­дем ве­ро­ят­но­сти на­ступ­ле­ния такой по­го­ды: P(XXO) = 0,8·0,8·0,2 = 0,128; P(XOO) = 0,8·0,2·0,8 = 0,128; P(OXO) = 0,2·0,2·0,2 = 0,008; P(OOO) = 0,2·0,8·0,8 = 0,128.Ука­зан­ные со­бы­тия не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий:

P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392. Ответ: 0,392. Ответ: 0,392

48. В ма­га­зи­не стоят два платёжных ав­то­ма­та. Каж­дый из них может быть не­ис­пра­вен с ве­ро­ят­но­стью 0,05 не­за­ви­си­мо от дру­го­го ав­то­ма­та. Най­ди­те ве­ро­ят­ность того, что хотя бы один ав­то­мат ис­пра­вен.

Ре­ше­ние.Най­дем ве­ро­ят­ность того, что не­ис­прав­ны оба ав­то­ма­та. Эти со­бы­тия не­за­ви­си­мые, ве­ро­ят­ность их про­из­ве­де­ния равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий: 0,05 · 0,05 = 0,0025. Со­бы­тие, со­сто­я­щее в том, что ис­пра­вен хотя бы один ав­то­мат, про­ти­во­по­лож­ное. Сле­до­ва­тель­но, его ве­ро­ят­ность равна 1 − 0,0025 = 0,9975. Ответ: 0,9975. Ответ: 0,9975

49. В тор­го­вом цен­тре два оди­на­ко­вых ав­то­ма­та про­да­ют кофе. Ве­ро­ят­ность того, что к концу дня в ав­то­ма­те за­кон­чит­ся кофе, равна 0,3. Ве­ро­ят­ность того, что кофе за­кон­чит­ся в обоих ав­то­ма­тах, равна 0,12. Най­ди­те ве­ро­ят­ность того, что к концу дня кофе оста­нет­ся в обоих ав­то­ма­тах.

Ре­ше­ние.Рас­смот­рим со­бы­тиеА = кофе за­кон­чит­ся в пер­вом ав­то­ма­те, В = кофе за­кон­чит­ся во вто­ром ав­то­ма­те.

Ве­ро­ят­ность того, что кофе оста­нет­ся в пер­вом ав­то­ма­те равна 1 − 0,3 = 0,7. Ве­ро­ят­ность того, что кофе оста­нет­ся во вто­ром ав­то­ма­те равна 1 − 0,3 = 0,7. Ве­ро­ят­ность того, что кофе оста­нет­ся в пер­вом или вто­ром ав­то­ма­те равна 1 − 0,12 = 0,88. По­сколь­ку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,88 = 0,7 + 0,7 − х, от­ку­да ис­ко­мая ве­ро­я­тность х = 0,52. Ответ: 0,9975.

50. Ответ: 0,52 Две фаб­ри­ки вы­пус­ка­ют оди­на­ко­вые стек­ла для ав­то­мо­биль­ных фар. Пер­вая фаб­ри­ка вы­пус­ка­ет 45% этих сте­кол, вто­рая — 55%. Пер­вая фаб­ри­ка вы­пус­ка­ет 3% бра­ко­ван­ных сте­кол, а вто­рая — 1%. Най­ди­те ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным.

Ре­ше­ние. Ве­ро­ят­ность того, что стек­ло куп­ле­но на пер­вой фаб­ри­ке и оно бра­ко­ван­ное: 0,45 · 0,03 = 0,0135. Ве­ро­ят­ность того, что стек­ло куп­ле­но на вто­рой фаб­ри­ке и оно бра­ко­ван­ное: 0,55 · 0,01 = 0,0055. По­это­му по фор­му­ле пол­ной ве­ро­ят­но­сти ве­ро­ят­ность того, что слу­чай­но куп­лен­ное в ма­га­зи­не стек­ло ока­жет­ся бра­ко­ван­ным равна 0,0135 + 0,0055 = 0,019. Ответ: 0,019.

Ответ: 0,019

5353.55 Ков­бой Джон по­па­да­ет в муху на стене с ве­ро­ят­но­стью 0,9, если стре­ля­ет из при­стре­лян­но­го ре­воль­ве­ра. Если Джон стре­ля­ет из не­при­стре­лян­но­го ре­воль­ве­ра, то он по­па­да­ет в муху с ве­ро­ят­но­стью 0,2. На столе лежит 10 ре­воль­ве­ров, из них толь­ко 4 при­стре­лян­ные. Ков­бой Джон видит на стене муху, на­уда­чу хва­та­ет пер­вый по­пав­ший­ся ре­воль­вер и стре­ля­ет в муху. Най­ди­те ве­ро­ят­ность того, что Джон про­махнётся.

Ре­ше­ние.Джон по­па­да­ет в муху, если схва­тит при­стре­лян­ный ре­воль­вер и по­па­дет из него, или если схва­тит не­при­стре­лян­ный ре­воль­вер и по­па­да­ет из него. По фор­му­ле услов­ной ве­ро­ят­но­сти, ве­ро­ят­но­сти этих со­бы­тий равны со­от­вет­ствен­но 0,4·0,9 = 0,36 и 0,6·0,2 = 0,12. Эти со­бы­тия не­сов­мест­ны, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий: 0,36 + 0,12 = 0,48. Со­бы­тие, со­сто­я­щее в том, что Джон про­мах­нет­ся, про­ти­во­по­лож­ное. Его ве­ро­ят­ность равна 1 − 0,48 = 0,52. Ответ. 0,52

Ответ: 0,52

52. Ответ: 0,07 55555555555 Чтобы по­сту­пить в ин­сти­тут на спе­ци­аль­ность «Линг­ви­сти­ка», аби­ту­ри­ент дол­жен на­брать на ЕГЭ не менее 70 бал­лов по каж­до­му из трёх пред­ме­тов — ма­те­ма­ти­ка, рус­ский язык и ино­стран­ный язык. Чтобы по­сту­пить на спе­ци­аль­ность «Ком­мер­ция», нужно на­брать не менее 70 бал­лов по каж­до­му из трёх пред­ме­тов — ма­те­ма­ти­ка, рус­ский язык и об­ще­ст­во­зна­ние.

Ве­ро­ят­ность того, что аби­ту­ри­ент З. по­лу­чит не менее 70 бал­лов по ма­те­ма­ти­ке, равна 0,6, по рус­ско­му языку — 0,8, по ино­стран­но­му языку — 0,7 и по об­ще­ст­во­зна­нию — 0,5.

Най­ди­те ве­ро­ят­ность того, что З. смо­жет по­сту­пить хотя бы на одну из двух упо­мя­ну­тых спе­ци­аль­но­стей.

Ре­ше­ние.В силу не­за­ви­си­мо­сти со­бы­тий, ве­ро­ят­ность успеш­но сдать эк­за­ме­ны на линг­ви­сти­ку: 0,6·0,8·0,7 = 0,336, ве­ро­ят­ность успеш­но сдать эк­за­ме­ны на ком­мер­цию: 0,6·0,8·0,5 = 0,24, ве­ро­ят­ность успеш­но сдать эк­за­ме­ны и на «Линг­ви­сти­ку», и на «Ком­мер­цию»: 0,6·0,8·0,7·0,5 = 0,168. Успеш­ная сдача эк­за­ме­нов на «Линг­ви­сти­ку» и на «Ком­мер­цию» — со­бы­тия сов­мест­ные, по­это­му ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий, умень­шен­ной на ве­ро­ят­ность их про­из­ве­де­ния. Тем самым, по­сту­пить на одну из этих спе­ци­аль­но­стей аби­ту­ри­ент может с ве­ро­ят­но­стью 0,336 + 0,24 − 0,168 = 0,408. Ответ: 0,408.

 

Ответ: 0,1 53. По от­зы­вам по­ку­па­те­лей Иван Ива­но­вич оце­нил надёжность двух ин­тер­нет- ма­га­зи­нов. Ве­ро­ят­ность того, что нуж­ный товар до­ста­вят из ма­га­зи­на А, равна 0,8. Ве­ро­ят­ность того, что этот товар до­ста­вят из ма­га­зи­на Б, равна 0,9. Иван Ива­но­вич за­ка­зал товар сразу в обоих ма­га­зи­нах. Счи­тая, что ин­тер­нет-ма­га­зи­ны ра­бо­та­ют не­за­ви­си­мо друг от друга, най­ди­те ве­ро­ят­ность того, что ни один ма­га­зин не до­ста­вит товар. Ре­ше­ние. Ве­ро­ят­ность того, что пер­вый ма­га­зин не до­ста­вит товар равна 1 − 0,9 = 0,1. Ве­ро­ят­ность того, что вто­рой ма­га­зин не до­ста­вит товар равна 1 − 0,8 = 0,2. По­сколь­ку эти со­бы­тия не­за­ви­си­мы, ве­ро­ят­ность их про­из­ве­де­ния (оба ма­га­зи­на не до­ста­вят товар) равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий: 0,1 · 0,2 = 0,02. Ответ: 0,02.

54. Ответ: 0,02

57 Перед на­ча­лом во­лей­боль­но­го матча ка­пи­та­ны ко­манд тянут чест­ный жре­бий, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Ста­тор» по оче­ре­ди иг­ра­ет с ко­ман­да­ми «Ротор», «Мотор» и «Стар­тер». Най­ди­те ве­ро­ят­ность того, что «Ста­тор» будет на­чи­нать толь­ко первую и по­след­нюю игры. Ре­ше­ние.Тре­бу­ет­ся найти ве­ро­ят­ность про­из­ве­де­ния трех со­бы­тий: «Ста­тор» на­чи­на­ет первую игру, не на­чи­на­ет вто­рую игру, на­чи­на­ет тре­тью игру. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий. Ве­ро­ят­ность каж­до­го из них равна 0,5, от­ку­да на­хо­дим: 0,5·0,5·0,5 = 0,125. Ответ: 0,125.

Ответ: 0,125

55. Всем па­ци­ен­там с по­до­зре­ни­ем на ге­па­тит де­ла­ют ана­лиз крови. Если ана­лиз вы­яв­ля­ет ге­па­тит, то ре­зуль­тат ана­ли­за на­зы­ва­ет­ся по­ло­жи­тель­ным. У боль­ных ге­па­ти­том па­ци­ен­тов ана­лиз даёт по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,9. Если па­ци­ент не болен ге­па­ти­том, то ана­лиз может дать лож­ный по­ло­жи­тель­ный ре­зуль­тат с ве­ро­ят­но­стью 0,01. Из­вест­но, что 5% па­ци­ен­тов, по­сту­па­ю­щих с по­до­зре­ни­ем на ге­па­тит, дей­стви­тель­но боль­ны ге­па­ти­том. Най­ди­те ве­ро­ят­ность того, что ре­зуль­тат ана­ли­за у па­ци­ен­та, по­сту­пив­ше­го в кли­ни­ку с по­до­зре­ни­ем на ге­па­тит, будет по­ло­жи­тель­ным.

Ре­ше­ние. Ана­лиз па­ци­ен­та может быть по­ло­жи­тель­ным по двум при­чи­нам: А) па­ци­ент бо­ле­ет ге­па­ти­том, его ана­лиз верен; B) па­ци­ент не бо­ле­ет ге­па­ти­том, его ана­лиз ложен. Это не­сов­мест­ные со­бы­тия, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий. Имеем: Р(А)=0,9•0.05=0,045; Р(В)= 0,01•0,95=0,0095,Р(А+В)=Р(А)(В)=0,045+0,0095=0,0545.

Ответ:0,0545.

Ответ: 0,0545

56. Ав­то­ма­ти­че­ская линия из­го­тав­ли­ва­ет ба­та­рей­ки. Ве­ро­ят­ность того, что го­то­вая ба­та­рей­ка не­ис­прав­на, равна 0,02. Перед упа­ков­кой каж­дая ба­та­рей­ка про­хо­дит си­сте­му кон­тро­ля. Ве­ро­ят­ность того, что си­сте­ма за­бра­ку­ет не­ис­прав­ную ба­та­рей­ку, равна 0,99. Ве­ро­ят­ность того, что си­сте­ма по ошиб­ке за­бра­ку­ет ис­прав­ную ба­та­рей­ку, равна 0,01. Най­ди­те ве­ро­ят­ность того, что слу­чай­но вы­бран­ная ба­та­рей­ка будет за­бра­ко­ва­на си­сте­мой кон­тро­ля.

Ре­ше­ние.Си­ту­а­ция, при ко­то­рой ба­та­рей­ка будет за­бра­ко­ва­на, может сло­жить­ся в ре­зуль­та­те со­бы­тий: A = ба­та­рей­ка дей­стви­тель­но не­ис­прав­на и за­бра­ко­ва­на спра­вед­ли­во или В = ба­та­рей­ка ис­прав­на, но по ошиб­ке за­бра­ко­ва­на. Это не­сов­мест­ные со­бы­тия, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей эти со­бы­тий. Имеем: Р(А+В)=Р(А)+Р(В)=0,02•0,99+0,98•0,01=0,0198+0,0098=0,0296 Ответ: 0,0296. Ответ: 0,0296

Ответ: 0, 57. Стре­лок стре­ля­ет по ми­ше­ни один раз. В слу­чае про­ма­ха стре­лок де­ла­ет вто­рой вы­стрел по той же ми­ше­ни. Ве­ро­ят­ность по­пасть в ми­шень при одном вы­стре­ле равна 0,7. Най­ди­те ве­ро­ят­ность того, что ми­шень будет по­ра­же­на (либо пер­вым, либо вто­рым вы­стре­лом).

Ре­ше­ние. Пусть A — со­бы­тие, со­сто­я­щее в том, что ми­шень по­ра­же­на стрел­ком с пер­во­го вы­стре­ла, B — со­бы­тие, со­сто­я­щее в том, что ми­шень по­ра­же­на со вто­ро­го вы­стре­ла. Ве­ро­ят­ность со­бы­тия A равна P(A) = 0,7. Со­бы­тие B на­сту­па­ет, если, стре­ляя пер­вый раз, стре­лок про­мах­нул­ся, а, стре­ляя вто­рой раз, попал. Это не­за­ви­си­мые со­бы­тия, их ве­ро­ят­ность равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий: P(B) = 0,3·0,7 = 0,21. Со­бы­тия A и B не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий: P (A + B) = P(A) + P(B) = 0,7 + 0,21 = 0,91. Ответ: 0,91. Ответ: 0,011

Ответ: 0,88

Ответ: 0,75

Ответ: 0,2

61616661.66 Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд будет пер­вой вла­деть мячом. Ко­ман­да А долж­на сыг­рать два матча — с ко­ман­дой В и с ко­ман­дой С. Най­ди­те ве­ро­ят­ность того, что в обоих мат­чах пер­вой мячом будет вла­деть ко­ман­да А.

Ре­ше­ние.Рас­смот­рим все воз­мож­ные ис­хо­ды же­ребьёвки.

· Ко­ман­даА в матче в обоих мат­чах пер­вой вла­де­ет мячом.

· Ко­ман­даА в матче в обоих мат­чах не вла­де­ет мячом пер­вой.

· Ко­ман­даА в матче с ко­ман­дой В вла­де­ет мячом пер­вой, а в матче с ко­ман­дой С — вто­рой.

· Ко­ман­даА в матче с ко­ман­дой С вла­де­ет мячом пер­вой, а в матче с ко­ман­дой В — вто­рой.

Из че­ты­рех ис­хо­дов один яв­ля­ет­ся бла­го­при­ят­ным, ве­ро­ят­ность его на­ступ­ле­ния равна 1:4=0,25. Ответ: 0,25.

 

Ответ: 0,25

Ответ: 0,55

Ответ: 0,995

62.66662Ответ: 0,5

Ответ: 0,3

Ответ: 0,25

626259 59. Стре­лок 4 раза стре­ля­ет по ми­ше­ням. Ве­ро­ят­ность по­па­да­ния в ми­шень при одном вы­стре­ле равна 0,5. Най­ди­те ве­ро­ят­ность того, что стре­лок пер­вые 3 раза попал в ми­ше­ни, а по­след­ний раз про­мах­нул­ся.

Ре­ше­ние.Ве­ро­ят­ность про­ма­ха равна 1 − 0,5 = 0,5. Ве­ро­ят­ность того, что стре­лок пер­вые три раза попал в ми­ше­ни равна 0,53 = 0,125. От­ку­да, ве­ро­ят­ность со­бы­тия, при ко­то­ром стре­лок сна­ча­ла три раза по­па­да­ет в ми­ше­ни, а четвёртый раз про­ма­хи­ва­ет­ся равна 0,125 · 0,5 = 0,0625. Ответ: 0,0625.

Перед началом матча по футболу судья бросает монету, чтобы определить, какая из команд будет первой владеть мячом. Команда «Байкал» играет по очереди с командами

«Амур», «Енисей», «Иртыш». Найти вероятность того, что команда «Байкал» будет первой владеть мячом только в игре с «Амуром».Ответ: 0,0625

Решение.Монету бросают 3 раза.

Для команды «Байкал» возможные исходы в трех бросках {О О О},{Р О О}, {О Р О}, {О О Р}, {Р Р О},{Р О Р}, {О Р Р},{Р Р Р}. Всего исходов 8, благоприятныx1(выпадение орла в первой игре) {О Р Р, 1:8=0,125. Ответ 0,125.

61. У Пети в кармане лежат шесть монет: четыре монеты по рублю и две монеты по два рубля. Петя, не глядя, переложил какие-то три монеты в другой карман. Найдите вероятность того, что теперь две двухрублевые монеты лежат в одном кармане.

Решение.Пронумеруем монеты: рублевые – 1, 2, 3, 4; двухрублевые – 5, 6. {123}{124} {125} {126} {134} {135} {136} {145} {146} {156}{234} {235} {236} {245} {246} {256 } {345} {346} {356}{456}

n = 20 – число всех исходов.Взять три монеты можно так: (числа в порядке возрастания,чтобы не пропустить комбинацию) m = 8 – число благоприятных исходов

(комбинации, в которых монеты 5 и 6 (двухрублевые) не взяты или взяты обе. 8:20= 0,4

Ответ: 4

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...