Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Расчет потерь бензина от «большого дыхания»

Задание

 

Задание студенту Джуманову Ильвару Фаридовичу

гр. РЭМ-441 «Потери нефтепродуктов от испарения из резервуаров. Расчет потери бензина от больших дыханий».

Задание на расчет потерь бензина.

Определить потери бензина при «большом дыхании» из резервуара РВС-5000, расположенного в г. Уфе на перевалочной нефтебазе. Диаметр резервуара Др = 22,76 м., высота Нр = 11,9 м, высота корпуса крыши hk=0,57 м, высота взрыва бензина начальная вз=7м, высота взрыва конечная . Закачка длится t=2,5 часа, с производительностью Q=60м3/ч. Средняя температура бензина Tср=298 К.

Время простоя резерва Тср=17,5 ч. Закачка производится днем в ясную солнечную погоду. Нагрузка дыхательных клапанов Pк.в.=196,2 Па.

Рк.д. =1362 Па. Барометрическое давление Ра=0,1013. Температура начала кипения бензина Тн.к.=319 К, плотность , давление насыщенных паров 311 К. Географическая широта расположения резервуара ’.


СОДЕРЖАНИЕ

 

Введение. 4

1. Расчет потерь бензина от «большого дыхания». 6

2. Некоторые методы и средства снижения потерь нефти и нефтепродуктов. 15

2.1 Резервуары для хранения легковоспламеняющихся жидкостей (ЛВЖ) 15

2.2 Резервуары с металлическими и синтетическими понтонами. 15

2.3 Резервуары с плавающей крышей. 16

2.4 Резервуары повышенного давления. 18

2.5 Резервуары с эластичными полимерными оболочками (ПЭО) 19

2.6 Подземное и подводное хранение топлив. 19

2.7 Использование дисков - отражателей. 20

3. Техника безопасности. 22

Заключение. 23

Список литературы.. 24

 


Введение

 

Нефть и нефтепродукты проходят сложный путь транспортировки, хранения и распределения. От скважин до установки нефтеперерабатывающего завода, от завода до потребителя. При этом они подвергаются многочисленным транспортным операциям, которые сопровождаются потерями, составляющими около 9% от годовой добычи нефти. Из них 2-2,5% приходятся на потери в сфере транспорта, хранения и распределения нефтепродуктов. Эти потери подразделяются на количественные (утечки, разливы, аварии), качественно-количественные (испарение, смешение). Значительную долю в общем балансе потерь составляют потери от испарения в резервуарах и при сливо-наливных операциях.

Испарение нефти и бензинов приводит к изменению их физико-химических свойств, уменьшению выхода светлых нефтепродуктов при переработке нефти, ухудшению эксплуатационных характеристик двигателей. В связи с этим затрудняется запуск двигателей, надежность их работы, увеличивается расход топлива и сокращается срок эксплуатации. Теряемые легкие углеводороды загрязняют окружающую среду и повышают пожароопасность предприятий.

По данным исследований Всероссийского Научного исследовательского института по сбору, подготовке и транспорту нефти (ВНИИСПТ нефти), при испарении 2% по весу легких фракций автобензин октановое число снижается в среднем Na=0,4 единицы, а удельная мощность двигателя Na = 0,24-0,4%.Этому снижению октанового расхода топлива Na0,3 – 0,36% для различных марок автобензина.

Потери нефтепродуктов на нефтебазах происходят в результате нарушения правил технической эксплуатации сооружений и технологического оборудования. Эти потери (от утечек, смешения, загрязнения, обводнения, неслитого остатка и др.) должна быть полностью ликвидирована или уменьшена путем повышения технического уровня эксплуатации, проведения организационно-технических и профилактических мероприятий.

Одним из основных видов потерь нефти и нефтепродуктов являются потери от «больших дыханий» резервуаров при закачке продукции. «Зеркало» нефтепродуктов при этом как торец поршня в поршневом насосе поднимается вверх и, снимая газовое пространство резервуара, заставляет открыться тарелкам механических дыханий клапанов. Ниже представлен расчет потерь бензина от «большого дыхания» РВС-5000.


Расчет потерь бензина от «большого дыхания»

 

1. Определим площадь зеркала бензина

 

     (1)

 

где dр – внутренний диаметр резервуара, м.

dр =22,76 м.

 

 

2. Найдем высоту газового пространства после закачки бензина.

 

Нг1рвз+ , м   (2)

 

где Hр - высота резервуара, м. Hр=11,9м.

Нвз = высота взрыва после закачки бензина, м.

Нвз=11м.

- объем, ограничиваемый поверхностью крыши и плоскостью, проходящей через верхний срез цилиндрической части резервуара (для вертикальных цилиндрических резервуаров с конической крышей , здесь hk – высота конуса крыши, м.)

 

, м (3)


 

3. Абсолютное давление в газовом пространстве резервуара до закачка Рр=101325Па

4. Находим высоту газового пространства резервуара до закачки с учетом конуса крыши.

 

 (4)

 

где - высота взлива бензина конечная, м.

=11м.

- высота взлива бензина начальная, м.

=7м.

=5,09м.

5. Найдем объем газового пространства резервуара

 

, м3   (5)

 

где fб- площадь зеркала бензина, м2

6. Найдем отношение абсолютного давления газового пространства резервуара к средней температуре бензина

 

 (6)


7. По графику (рис.1.) для определения плотности бензиновых паров, исходя из уравнения состязания

 

 (7)

 

найдем плотность паров бензина, где р1 – абсолютное давление в газовом пространстве, Па

 

Рис.1. График для определения плотности бензиновых паров

 

М- молярная масса паров бензина, кг/моль;

 - универсальная газовая постоянная, Дж/(моль∙К)

=8314,3 Дж/(моль∙К)

Т – средняя температура бензина, Тпср = 298 К.

8. По формуле Воинова находим молярную массу бензиновых паров

 

    (8)

 

где Тпн.к-30К (9)

 

где Тн.к – температура начала кипения бензина, К

Тн.к = 319К,

Тогда Тн=319-3=289К.

Подставляем значение Тн в формулу (8)

М = 52,629-0,246∙289+0,001∙2892=65,056 кг/моль

9. Подставляя данные в формулу (7), получим:

 

 

10. Находим суммарное время до окончания закачки бензина

 

,  (10)

 

где fпр- время простоя резервуара до закачки,

fпр=17,5г

f3- время закачки резервуара,

f3=2,5 часа

f=17,5+2,5=20часов

11. Найдем прирост средней относительной концентрации в газовом пространстве резервуара за время простоя , (табл 25 [2]), где Сs – концентрация бензиновых паров на линии насыщения.

 

(для =20часов при солнечной погоде) (11)

 

12. Вычислим скорость выхода паровоздушной смеси через 2 дыхательных клапана типа НДКМ-200

 

,                (11)


где Q – производительность закачка, м3

 

Q=60м33,

 

d – диаметр (внутренний) дыхательного клапана НДКМ-200, d=200мм = 0,2м.

2 – число дыхательных клапанов.

 

 

13. Произведем нахождение величины - прироста средней относительной концентрации в газовом пространстве резервуара за время выкачки бензина (по графику24 [2]), рис.3.

 

Рис. 3. Зависимость часового прироста относительной концентрации в газовом пространстве во время выкачки из резервуара, оборудованного двумя дыхательными клапанами типа НДКМ:

1 - РВС-300;

2 – РВС-500;

3 – РВС-10 000;

4 – РВС-20 000;

(12)

 

14. Найдем среднюю относительную концентрацию в газовом пространстве резервуара в рассматриваемый период

 

(13)

 

где  - высота газового пространства резервуара после закачки бензина, м

=1,09

 - высота газового пространства резервуара до закачки бензина, м

=5,09

- время закачки, час. =2,5 часа

 - средняя относительная концентрация в газовом пространстве резервуара за время 2,5 часовой закачки

 

=0,052

 

 - средняя относительная концентрация в газовом пространстве резервуара за время простоя, =0,2

 

 

15. Определим давление насыщенных паров бензина

По графику 23 [2] для Тп ср=2980К (рис.4)

Рs = 28800 Па

 

Рис.4. График для определения давления насыщенных паров нефтепродуктов: 1 – авиационные бензины; 2 – автомобильные бензины

 

16. Определим среднее расчетное парциальное давление паров бензина

           (14)

 

где  - средняя относительная концентрация в газовом пространстве резервуара в рассматриваемый период,  = 0,544

 - среднее расчетное парциальное давление паров бензина, =28800 Па

=0,544ּ28800=15667 Па

17. Рассчитаем потери бензина на одного «большого дыхания»

       (15)

 

где  - объем закачиваемого в резервуар бензина за 2,5 часа,

 

=2,5ּQ=2.5ּ650=1625 м3

 

 - объем газового пространства резервуара перед закачкой бензина, м3, =2070 м3

 - абсолютное давление в газовом пространстве в конце закачки

 

Р2ак.у ,     (16)

 

где Ра – барометрическое (атмосферное) давление Ра=101320 Па,

Рк.у – нагрузка дыхательных клапанов, Па

Рк.у = 1962

Р2 = 101320+1962=103282 Па

Р1 – абсолютное давление в газовом пространстве в начале закачки, Па

 

Р1ак.в. Па, (17)

 

где Рк.в. – нагрузка вакуумного дыхательного клапана, Рк.в. = 196,2 Па

Р1=101320-196,2=101123,8 Па

Ру – среднее расчетное парциальное давление паров бензина, Ру = 15667 Па

 - плотность паров бензина, кг/м3, =2,98 кг/м3

 

18. Определим, на какое давление должен быть установлен дыхательный клапан, чтобы при расчетных условиях пп. 1-17 не было потерь от «большого дыхания».

 

   (16)

 

где  - объем газового пространства резервуара до закачки, м3, =2070 м3

 - объем газового пространства после прекращения закачки, м, =1625 м3

 - величина упругости бензиновых паров, Па, =15667 Па

 - абсолютное давление в газовом пространстве в конце закачки

=103282 Па

 

 

Естественно, такое значительное давление вертикальный цилиндрический резервуар типа РВС выдержать не сможет, поэтому нельзя перегружать дыхательные клапаны во избежание потерь «от большого дыхания».


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...