Расчет потерь бензина от «большого дыхания»
Задание
Задание студенту Джуманову Ильвару Фаридовичу гр. РЭМ-441 «Потери нефтепродуктов от испарения из резервуаров. Расчет потери бензина от больших дыханий». Задание на расчет потерь бензина. Определить потери бензина при «большом дыхании» из резервуара РВС-5000, расположенного в г. Уфе на перевалочной нефтебазе. Диаметр резервуара Др = 22,76 м., высота Нр = 11,9 м, высота корпуса крыши hk=0,57 м, высота взрыва бензина начальная вз=7м, высота взрыва конечная . Закачка длится t=2,5 часа, с производительностью Q=60м3/ч. Средняя температура бензина Tср=298 К. Время простоя резерва Тср=17,5 ч. Закачка производится днем в ясную солнечную погоду. Нагрузка дыхательных клапанов Pк.в.=196,2 Па. Рк.д. =1362 Па. Барометрическое давление Ра=0,1013. Температура начала кипения бензина Тн.к.=319 К, плотность , давление насыщенных паров 311 К. Географическая широта расположения резервуара ’. СОДЕРЖАНИЕ
Введение. 4 1. Расчет потерь бензина от «большого дыхания». 6 2. Некоторые методы и средства снижения потерь нефти и нефтепродуктов. 15 2.1 Резервуары для хранения легковоспламеняющихся жидкостей (ЛВЖ) 15 2.2 Резервуары с металлическими и синтетическими понтонами. 15 2.3 Резервуары с плавающей крышей. 16 2.4 Резервуары повышенного давления. 18 2.5 Резервуары с эластичными полимерными оболочками (ПЭО) 19 2.6 Подземное и подводное хранение топлив. 19 2.7 Использование дисков - отражателей. 20 3. Техника безопасности. 22 Заключение. 23 Список литературы.. 24
Введение
Нефть и нефтепродукты проходят сложный путь транспортировки, хранения и распределения. От скважин до установки нефтеперерабатывающего завода, от завода до потребителя. При этом они подвергаются многочисленным транспортным операциям, которые сопровождаются потерями, составляющими около 9% от годовой добычи нефти. Из них 2-2,5% приходятся на потери в сфере транспорта, хранения и распределения нефтепродуктов. Эти потери подразделяются на количественные (утечки, разливы, аварии), качественно-количественные (испарение, смешение). Значительную долю в общем балансе потерь составляют потери от испарения в резервуарах и при сливо-наливных операциях.
Испарение нефти и бензинов приводит к изменению их физико-химических свойств, уменьшению выхода светлых нефтепродуктов при переработке нефти, ухудшению эксплуатационных характеристик двигателей. В связи с этим затрудняется запуск двигателей, надежность их работы, увеличивается расход топлива и сокращается срок эксплуатации. Теряемые легкие углеводороды загрязняют окружающую среду и повышают пожароопасность предприятий. По данным исследований Всероссийского Научного исследовательского института по сбору, подготовке и транспорту нефти (ВНИИСПТ нефти), при испарении 2% по весу легких фракций автобензин октановое число снижается в среднем Na=0,4 единицы, а удельная мощность двигателя Na = 0,24-0,4%.Этому снижению октанового расхода топлива Na0,3 – 0,36% для различных марок автобензина. Потери нефтепродуктов на нефтебазах происходят в результате нарушения правил технической эксплуатации сооружений и технологического оборудования. Эти потери (от утечек, смешения, загрязнения, обводнения, неслитого остатка и др.) должна быть полностью ликвидирована или уменьшена путем повышения технического уровня эксплуатации, проведения организационно-технических и профилактических мероприятий. Одним из основных видов потерь нефти и нефтепродуктов являются потери от «больших дыханий» резервуаров при закачке продукции. «Зеркало» нефтепродуктов при этом как торец поршня в поршневом насосе поднимается вверх и, снимая газовое пространство резервуара, заставляет открыться тарелкам механических дыханий клапанов. Ниже представлен расчет потерь бензина от «большого дыхания» РВС-5000.
Расчет потерь бензина от «большого дыхания»
1. Определим площадь зеркала бензина
(1)
где dр – внутренний диаметр резервуара, м. dр =22,76 м.
2. Найдем высоту газового пространства после закачки бензина.
Нг1=Нр-Нвз+ , м (2)
где Hр - высота резервуара, м. Hр=11,9м. Нвз = высота взрыва после закачки бензина, м. Нвз=11м. - объем, ограничиваемый поверхностью крыши и плоскостью, проходящей через верхний срез цилиндрической части резервуара (для вертикальных цилиндрических резервуаров с конической крышей , здесь hk – высота конуса крыши, м.)
, м (3)
3. Абсолютное давление в газовом пространстве резервуара до закачка Рр=101325Па 4. Находим высоту газового пространства резервуара до закачки с учетом конуса крыши.
(4)
где - высота взлива бензина конечная, м. =11м. - высота взлива бензина начальная, м. =7м. =5,09м. 5. Найдем объем газового пространства резервуара
, м3 (5)
где fб- площадь зеркала бензина, м2 6. Найдем отношение абсолютного давления газового пространства резервуара к средней температуре бензина
(6) 7. По графику (рис.1.) для определения плотности бензиновых паров, исходя из уравнения состязания
(7)
найдем плотность паров бензина, где р1 – абсолютное давление в газовом пространстве, Па
Рис.1. График для определения плотности бензиновых паров
М- молярная масса паров бензина, кг/моль; - универсальная газовая постоянная, Дж/(моль∙К) =8314,3 Дж/(моль∙К) Т – средняя температура бензина, Тпср = 298 К. 8. По формуле Воинова находим молярную массу бензиновых паров
(8)
где Тп=Тн.к-30К (9)
где Тн.к – температура начала кипения бензина, К Тн.к = 319К, Тогда Тн=319-3=289К. Подставляем значение Тн в формулу (8) М = 52,629-0,246∙289+0,001∙2892=65,056 кг/моль 9. Подставляя данные в формулу (7), получим:
10. Находим суммарное время до окончания закачки бензина
, (10)
где fпр- время простоя резервуара до закачки,
fпр=17,5г f3- время закачки резервуара, f3=2,5 часа f=17,5+2,5=20часов 11. Найдем прирост средней относительной концентрации в газовом пространстве резервуара за время простоя , (табл 25 [2]), где Сs – концентрация бензиновых паров на линии насыщения.
(для =20часов при солнечной погоде) (11)
12. Вычислим скорость выхода паровоздушной смеси через 2 дыхательных клапана типа НДКМ-200
, (11) где Q – производительность закачка, м3/ч
Q=60м3/м3,
d – диаметр (внутренний) дыхательного клапана НДКМ-200, d=200мм = 0,2м. 2 – число дыхательных клапанов.
13. Произведем нахождение величины - прироста средней относительной концентрации в газовом пространстве резервуара за время выкачки бензина (по графику24 [2]), рис.3.
Рис. 3. Зависимость часового прироста относительной концентрации в газовом пространстве во время выкачки из резервуара, оборудованного двумя дыхательными клапанами типа НДКМ: 1 - РВС-300; 2 – РВС-500; 3 – РВС-10 000; 4 – РВС-20 000; (12)
14. Найдем среднюю относительную концентрацию в газовом пространстве резервуара в рассматриваемый период
(13)
где - высота газового пространства резервуара после закачки бензина, м =1,09 - высота газового пространства резервуара до закачки бензина, м =5,09 - время закачки, час. =2,5 часа - средняя относительная концентрация в газовом пространстве резервуара за время 2,5 часовой закачки
=0,052
- средняя относительная концентрация в газовом пространстве резервуара за время простоя, =0,2
15. Определим давление насыщенных паров бензина По графику 23 [2] для Тп ср=2980К (рис.4) Рs = 28800 Па
Рис.4. График для определения давления насыщенных паров нефтепродуктов: 1 – авиационные бензины; 2 – автомобильные бензины
16. Определим среднее расчетное парциальное давление паров бензина
(14)
где - средняя относительная концентрация в газовом пространстве резервуара в рассматриваемый период, = 0,544 - среднее расчетное парциальное давление паров бензина, =28800 Па
=0,544ּ28800=15667 Па 17. Рассчитаем потери бензина на одного «большого дыхания» (15)
где - объем закачиваемого в резервуар бензина за 2,5 часа,
=2,5ּQ=2.5ּ650=1625 м3
- объем газового пространства резервуара перед закачкой бензина, м3, =2070 м3 - абсолютное давление в газовом пространстве в конце закачки
Р2=Ра+Рк.у , (16)
где Ра – барометрическое (атмосферное) давление Ра=101320 Па, Рк.у – нагрузка дыхательных клапанов, Па Рк.у = 1962 Р2 = 101320+1962=103282 Па Р1 – абсолютное давление в газовом пространстве в начале закачки, Па
Р1=Ра-Рк.в. Па, (17)
где Рк.в. – нагрузка вакуумного дыхательного клапана, Рк.в. = 196,2 Па Р1=101320-196,2=101123,8 Па Ру – среднее расчетное парциальное давление паров бензина, Ру = 15667 Па - плотность паров бензина, кг/м3, =2,98 кг/м3
18. Определим, на какое давление должен быть установлен дыхательный клапан, чтобы при расчетных условиях пп. 1-17 не было потерь от «большого дыхания».
(16)
где - объем газового пространства резервуара до закачки, м3, =2070 м3 - объем газового пространства после прекращения закачки, м, =1625 м3 - величина упругости бензиновых паров, Па, =15667 Па - абсолютное давление в газовом пространстве в конце закачки =103282 Па
Естественно, такое значительное давление вертикальный цилиндрический резервуар типа РВС выдержать не сможет, поэтому нельзя перегружать дыхательные клапаны во избежание потерь «от большого дыхания».
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|