Работы по геометрии и прикладным вопросам
В начале 40-х годов Буняковский занялся исследованием теории параллельных линий. Этому вопросу посвящены все его собственно геометрические работы. Их появление свидетельствует о том, что Буняковский разделял отрицательное отношение к работам Лобачевского, сложившееся в Петербургской академии наук после отзыва Остроградского и высказываний П.Н. Фусса и Э.Д. Коллинса. Фусс и Коллинс считали исследования Лобачевского «бесполезными умозрениями», примером которых называли «умозрения о плоских треугольниках, в которых сумма углов будто бы не равна двум прямым. Сначала в работах по теории параллельных линий Буняковский совсем не называет имени Лобачевского, хотя в его намерения и входило «познакомить любителей геометрии с постепенным развитием и современным состоянием основного вопроса о теории параллельных линий, столь важного для науки». Решение этого вопроса было уже дано Лобачевским. Однако открытие Лобачевского осталось не понятым Буняковским. Неоднократные его попытки доказать аксиому параллельных по существу были выступлением против идей Лобачевского. Возвратившись к вопросу о параллельных линиях в 1872 году, когда уже начали появляться отдельные выступления с признанием заслуг Лобачевского, Буняковский снова выразил отрицательное отношение к его открытию. В своих работах он изложил критику различных попыток доказательства постулата Евклида, а также собственный взгляды по этому вопросу. Исследования Буняковского по теории параллельных линий с принципиальной точки зрения несостоятельны. Они сохраняют лишь некоторый исторический интерес. Наиболее ценным является работа «Параллельные линии» (1853г.).
Наряду с теоретическими Буняковский постоянно занимался прикладными вопросами. В статье по механике, в частности, он показал, что число положений равновесия однородной треугольной призмы, погруженной в жидкость, не может быть больше 15, и высказал предположение, что таких положение не больше 12. последнее в 1855 году доказал А.Ю. Давидов. В 1842 году Буняковский решил предложенную ему Б.С. Якоби задачу об определении числа особого вида сочетаний. К этой задаче Якоби пришел в работах по электромагнитному телеграфу. Позднее внимание Буняковского привлек вопрос о наивыгоднейшем размещении громоотводов (1863г.). Постоянно интересовался Буняковский средствами вычислений и математическими приборами. В исследованиях по этим вопросам он проявил себя и как видный изобретатель. К годам учения (1824г.) относится подвижная таблица, придуманная им для решения без всякого вычисления основных вопросов церковного календаря (описание опубликовал в 1857г.). К 50-м годам относятся его работы о планиметрах. Известные к тому времени планиметры, включая планиметр-самокат П.А. Зарубина (1854г.), были весьма сложными, малонадежными и дорогостоящими. Этих недостатков, в значительной мере, нет в планиметре-пантографе Буняковского (1855г.). В 1860 году Буняковский установил также теоретическую возможность построения свободных планиметров, т.е. планиметров, целиком свободно перемещающихся вдоль контура фигуры. К середине прошлого века метод наименьших квадратов получил широкое распространение. В трудах астрономов России В. Струве, О. Струве, Х. Петерса, а также других ученых значительное место занимала математическая обработка результатов наблюдений. Исследования М.Г. Паукера способствовали все более широкому использованию этого метода при обработке опытных данных в физике. Непосредственное практическое применение метода наименьших квадратов часто сопряжено со значительной вычислительной работой. Для облегчения ее выполнения и контроля полученных по этому методу результатов Буняковский предложил в 1858 году специальный прибор – суммарный эккер. Прибор позволял получать квадраты последовательности чисел с суммированием этих квадратов, а также произведения двух множителей (как разности квадратов их полусуммы и полуразности) с суммированием последовательности этих произведений. Принцип действия прибора основан на одной лишь теореме Пифагора. Изготовленный экземпляр прибора позволял выполнять действия с квадратами чисел, содержащих менее четырех цифр.
Самым простым и доступным прибором для выполнения простых вычислений являются русские счеты. Изобретением русских самосчетов (1867г.) Буняковский устранил основной недостаток счетов, связанный с перенесением вручную десяти единиц одного разряда в качестве единицы следующего разряда. В самосчетах Буняковского это выполнялось механически. Вопросами усовершенствования самосчетов и их применения Буняковский занимался в дальнейшем (1876г.). Работы Буняковского по прикладным вопросам, особенно его изобретения различных вычислительных приборов, представляли значительный интерес в свое время. Умер Буняковский в преклонном возрасте 30 ноября 1889 г. в Петербурге. Научное наследство Буняковского весьма значительно. Им написано около 130 работ, большая часть которых посвящена математическим проблемам. Около двух десятков работ Виктора Яковлевича затрагивают вопросы статистики и демографии. Самый капитальный труд Буняковского "Основания математической теории вероятностей". Это объемистая книга в 480 страниц вышла в свет более 100 лет тому назад. В истории развития теории вероятностей в России эта книга имеет исключительное значение. Профессор А. В. Васильев в известной книге "Русская наука" дает такую оценку этой работе Буняковского: "Незабвенная заслуга Буняковского перед русскою наукою и русскою положительною мыслью - изданное им в 1846 г. классическое сочинение: "Основы математической теории вероятностей". Это обстоятельное и ясно написанное сочинение, одно из лучших в математической литературе Европы по теории вероятностей, много способствовало распространению между русскими математиками интереса к этой науке и тому значению, которое преподавание теории вероятностей получило в русских университетах, сравнительно с университетами других стран"[11].
Список используемой литературы
1. История отечественной математики в четырех томах, том 2 1801-1917гг. Академия наук СССР
[1] Подготовленный Буняковским материалы к следующим двум томам словаря сохранились в рукописи [2] V. Bouniakowsky. Recherches numeriques. – Mem. De l’Acad. Des Sci., 1831, t. 1, p. 139-152 [3] V. Bouniakowsky. Sur les congruences du second degree. – Mem.. De l’Acad. Des Sci., 1831, t. 1, p. 563-581 В.Я. Буняковский. Об остаточных сравнениях третьей степени. - Mem.. De l’Acad. Des Sci.,1833, t. 2, р. 373-392, 1838, t. 1(III), р. 13-20. в этой работе Буняковский ввел русские термины «простое число» и «первообразный корень», ставшие впоследствии общепринятыми. [4] В.Я. Буняковский. О правильных многоугольниках, вписанных и описанных около круга.- Mem.. De l’Acad. Des Sci.,1841, t.2, р. 423-435. [5] V. Bouniakowsky. Solutijn d’un probleme de l’analyse de Diophante. – Mem. De l’Acad. Des Sci., 1844, t. 3,(V) p. 1-16; Note sur l\emploi du binome factoriel pour la resolution des congruences du premier degree.- Ibidem, p. 287-295. [6] V. Bouniakowsky. Recherches sur differentes lois nouvelles relatives a la sommee des diviseurs des nombres. Mem. De l’Acad. Des Sci., 1850, t. 4 (VI), p/ 259-295, Nouvelle methode dans les recherches relatives au[ formes quadratiques des nombres, - Ibidem, 1853, t. 5 (VII), p. 303-322. [7] V. Bouniakowsky. Note sur l’emploi des procedes elementaries du calcul integral dans des questins relatives a l’analyse de Diophante. – Bull. De la cl. Phys.-math., 1853, t. 11, col, 65-74. [8] V. Bouniakowsky. Sur les diviseurs numeriques invariable des functions rationnelles entieres.- Mem. De l’Acad. Des Sci., 1857, t. 6 (VIII), p. 304-329. [9] V. Bouniakowsky. Su rune extension du theoreme de Wilson.- Bull. De la cl. Phys.-math., 1857, t.15, col. 202-205, Sur un probleme de position relatif a la theorie des nombers.-Ibidem, 1858, t. 16, col. 67-78, Sur la trans formation des modules dans les congruences du premier degree. - Ibidem, 1859, t. 17, col. 129-135. [10] В.Я. Буняковский. Заметка об одной формуле, относящейся к теории чисел. – Записки Академии наук, 1887, т. 55, Приложение № 5,6 с. [11] "Русская Наука". Отдел второй. Математика. Заслуж. проф. А. В. Васильев Вып. I (1725-1826-1863). Петроград 1921
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|