Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Глава 2. Обеспечение качества питьевой воды.




Реагентные (химические) методы обеззараживания питьевой воды

Хлорирование

Самый распространенный и проверенный способ дезинфекции воды – первичное хлорирование. В настоящее время этим методом обеззараживается 98,6 % воды. Причина этого заключается в повышенной эффективности обеззараживания воды и экономичности технологического процесса в сравнении с другими существующими способами. Хлорирование позволяет не только очистить воду от нежелательных органических и биологических примесей, но и полностью удалить растворенные соли железа и марганца. Другое важнейшее преимущество этого способа – его способность обеспечить микробиологическую безопасность воды при ее транспортировании пользователю благодаря эффекту последействия.

Существенный недостаток хлорирования – присутствие в обработанной воде свободного хлора, ухудшающее ее органолептические свойства и являющееся причиной образования побочных галогенсодержащих соединений (ГСС). Бόльшую часть ГСС составляют тригалометаны (ТГМ) – хлороформ, дихлорбромметан, дибромхлорметан и бромоформ. Их образование обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения. Этот процесс растянут по времени до нескольких десятков часов, а количество образующихся ТГМ при прочих равных условиях тем больше, чем выше рН воды. Для устранения примесей требуется доочистка воды на угольных фильтрах. В настоящее время предельно допустимые концентрации для веществ, являющихся побочными продуктами хлорирования, установлены в различных развитых странах в пределах от 0,06 до 0,2 мг/л и соответствуют современным научным представлениям о степени их опасности для здоровья.

Для хлорирования воды используются такие вещества как собственно хлор (жидкий или газообразный), диоксид хлора и другие хлорсодержащие вещества.

Озонирование

Преимущество озона (О3) перед другими дезинфектантами заключается в присущих ему дезинфицирующих и окислительных свойствах, обусловленных выделением при контакте с органическими объектами активного атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Кроме уникальной способности уничтожения бактерий, озон обладает высокой эффективностью в уничтожении спор, цист и многих других патогенных микробов. Исторически применение озона началось еще в 1898 г. во Франции, где впервые были созданы опытно-промышленные установки по подготовке питьевой воды.

Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет 1–6 мг/л при контакте в 8–15 мин; количество остаточного озона должно составлять не более 0,3–0,5 мг/л, т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб.

С гигиенической точки зрения озонирование воды – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания воды оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.

Ограничениями для распространения технологии озонирования являются высокая стоимость оборудования, большой расход электроэнергии, значительные производственные расходы, а также необходимость высококвалифицированного оборудования. Последний факт обусловил использование озона лишь при централизованном водоснабжении. Кроме того, в процессе эксплуатации установлено, что в ряде случаев (если температура обрабатываемой природной воды превышает 22 °С) озонирование не позволяет достичь требуемых микробиологических показателей по причине отсутствия эффекта пролонгации дезинфицирующего воздействия

Метод озонирования воды технически сложен и наиболее дорогостоящ среди других методов обеззараживания питьевой воды.. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это ограничивает использование данного метода в повседневной жизни.

Другим существенным недостатком озонирования явялется токсичность озона. Предельно допустимое содержание этого газа в воздухе производственных помещений - 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси.

Существующие конструкции современных озонаторов представляют собой большое количество близко расположенных ячеек, образованных электродами, один из которых находится под высоким напряжением, а второй – заземлен. Между электродами с определенной периодичностью возникает электрический разряд, в результате которого в зоне действия ячеек из воздуха образуется озон. Полученной озоновоздушной смесью барботируют обрабатываемую воду. Подготовленная таким образом вода по вкусу, запаху и другим свойствам превосходит воду, обработанную хлором.

Другие реагентные способы дезинфекции воды

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Физические методы обеззараживания питьевой воды

Кипячение

Из физических способов обеззараживания воды наиболее распространенным и надежным (в частности, в домашних условиях) является кипячение.

При кипячении происходит уничтожение большинства бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, которые часто содержатся в открытых водоисточниках, а как следствие и в системах центрального водоснабжения.

Кроме того, при кипячении воды удаляются растворенные в ней газы и уменьшается жесткость. Вкусовые качества воды при кипячении меняются мало. Правда для надежной дезинфекции рекомендуется кипятить воду в течение 15 - 20 минут, т.к. при кратковременном кипячении некоторые микроорганизмы, их споры, яйца гельминтов могут сохранить жизнеспособность (особенно если микроорганизмы адсорбированы на твердых частицах). Однако применение кипячения в промышленных масштабах, конечно же, не представляется возможным ввиду высокой стоимости метода.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...