Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Отравления рыб в естественных водоемах разделяет на три группы.

Глоссарий по дисциплине «Ихтиотоксикология»

Ихтиотоксикология – отрасль токсикологии, санитарной ихтиологии и гидробиологии, наука о токсических свой­ствах водной среды для гидробионтов, изучающая биоценотические взаимоотношения в условиях загрязнен­ного водоема, влияние загрязнителей на процессы самоочищения водоемов, разрабатывающая предельно допустимые концентрации (ПДК) сброса токсических веществ в водоем, методы диагностики токсикозов и дру­гие вопросы. Ее еще называют водной токсикологией.

О бъектом изучения ихтиотоксикологии являются рыбы, а в настоящее время и другие гидробионты, такие как ракообразные и моллюски.

Предметом ее изучения являются различные вещества органического и неорганического происхождения, способные оказывать негативное воздействие на состояние здоровья гидробионтов, вызывая их отравления.

Одной из основных задач ихтиотоксикологии яв­ляется определение тех границ, при которых внешние факторы среды обитания переходят физиологические пределы и становятся вредными для организма.

Яды – это чужеродные вещества (ксенобиотики), способные вступать во взаимодействие с различными структурами организма и вызывать нарушение его жизнедеятельности, переходящее при определенных условиях в болезнен­ное состояние (отравление).

Токсичность – это способность химических веществ вызывать нарушение жизнедеятельности организма, то есть отравление. При установлении степени токсичности химических веществ для гидробионтов различают:

1) смертельные концентрации (дозы) – вызывают гибель всех (СК100) или половины (CK50) животных при остром или хроническом отравлении;

2) токсические максимально переносимые концентрации (СКо), вызы­вающие клинические признаки отравления, не обусловливая гибели организма;

3) пороговые концентрации минимальные концентрации, вызывающие
достоверно патологические изменения в организме, регистрируемые наиболее
чувствительными методами исследования;

4) предельно допустимые концентрации (ПДК) – допустимые концентрации вредных веществ в рыбохозяйственных водоемах, которые не оказывают
отрицательного влияния на режим водоемов, не нарушают нормальную жизнедеятельность рыб и других полезных гидробионтов, не создают опасности накопления токсических веществ в объектах водоема.

Характер отравления рыб зависит от сочетания следующих факторов:

а) вида источника загрязнения и токсических компонентов в сточных водах;

б) концентрации (дозы) и продолжительности воздействия ядовитых веществ;

в) вида, возраста и физиологического состояния рыб; г) состояния среды обитания, ее гидрологического, гидрохимического режима и других факторов.

Отравления рыб в естественных водоемах разделяет на три группы.

1. Природные токсикозы возникают в районах водораздела пресных и со­леных водоемов, когда происходит засоление пресной воды при падении ее уровня и переливе морской воды.

2. Токсикозы рыб от сине-зеленых водорослей при обильном развитии вы­деляют токсины, а при массовом отмирании поглощают кислород и разлагаются с образованием ядовитых продуктов.

3. Токсикозы рыб от химических веществ антропогенного происхождения (наиболее массовые) проявляются в результате «залповых» сбросов сточных вод или систематического загрязнения водоемов небольшими количествами токсических веществ.

В современной ихтиотоксикологии определились несколько направлений в исследованиях как теоретиче­ского, так и практического характера.

1 Борьба с загрязнениями водоемов. Ос­новной вопрос этой проблемы — установление пре­дельно допустимых концентраций сброса сточных вод в водоемы, предотвращение пестицидного загрязнения водоемов, а также разработка научно обоснованных рекомендаций, определяющих, до каких пределов надо очищать стоки, прежде чем их спустить в открытый во­доем.

Установление ПДК (предельно допустимых концентраций) токсических веществ является центральным пунктом биологической части этого во­проса.

2 Диагностика отравления рыб и рас­познавание токсичности водной среды. Центральным пунктом этого вопроса является разра­ботка комплексных методов диагностики отравления рыб и других полезных гидробионтов. Это требует углубленной разработки унифицированных методик определе­ния токсичности водной среды, в частности для малых концентраций токсикантов, и нахождения их химиче­ских форм в воде.

Для диагностики отравления рыб в настоящее время используются анамнестические сведения, клинические, патологоанатомические, гистологические, гематологиче­ские, физиологические, биохимические, биофизические методы исследования. В последние годы используется метод кислотных эритрограмм, а также метод условных рефлексов. Особенно важна в этом аспекте разработка экспресс-методов диагностики отравления рыб. Изуче­ние и подбор индикаторных организмов на различные токсические вещества, использование органолептических исследований.

3 Выяснение механизма действия токсических веществ и метаболизм токсиканта в организме гид роб ион та. Это направление ис­следований, несмотря на кажущуюся теоретичность, имеет самое непосредственное значение для практиче­ской реализации исследований по двум предыдущим направлениям. В теоретической части этой проблемы стоят вопросы воздействия токсических веществ на гидробионтов на уровне молекул, организма и популяции (биоценоза).

На уровне молекул следует вскрыть: а) связь струк­туры вещества с его токсичностью; б) места поражения или точки приложения токсиканта: субстраты в клетке, изменение биохимических процессов (например, синтез белка, окислительное фосфорилирование, фотосинтез); в) хемомутацию.

На уровне организма определяют: а) количествен­ное и качественное изменение обмена веществ; б) узло­вые процессы, нарушающие регуляцию; в) связь нару­шений обмена веществ с размножением, плодовитостью и качеством потомства; г) приспособление, привыка­ние организма к ядам и степень их накопления; д) ме­таболизм токсиканта в организме гидробионта; е) осо­бенности действия на рыб сточных вод сложного со­става (синергизм и антагонизм ядов); ж) влияние не­специфических факторов водной среды на устойчивость рыб к ядам промышленных сточных вод; з) хрониче­ское действие малых концентраций вредных веществ и отдаленные последствия кратковременного контакта с высокотоксичными водами.

На уровне популяции (или биоценоза) изучают: а) поведение и изменения, претер­певаемые популяциями; б) изменение биоценотических взаимоотношений; в) изменение фауны и флоры во­доема.

4. Борьба с ненужными (или вредными) гидробионтами. Одним из многих способов управ­ления биологическими процессами является химическое воздействие на водную среду, под влиянием которого создаются условия, неблагоприятные для жизни вред­ных для человека гидробионтов, осуществляется борьба с цветением и зарастанием водоемов или обрастанием гидротехнических сооружений. С другой стороны, под влиянием химических веществ (например, удобрение водоемов минеральными и органическими веществами) создаются более благоприятные условия для полезных человеку гидробионтов.

Классификация сточных вод:

Неорганические загрязнители без специфических токсиче­ских свойств включают минеральные взвеси, соли натрия, кальция и магния, неорганические кислоты и щелочи, минеральные удобрения. Их отрицательное действие заключается в отложении осадков на дне, замутнении и засолении водоемов, повышении жесткости воды, изменении рН, запаха, цвета и других свойств. Поставщиками этих вод являются рудообогатительные фабрики, со­довые, азотно-туковые, машиностроительные, фарфорофаянсовые, угольные и некоторые химические предприятия.

Органические загрязнители без специфических токсических свойств являются преимущественно отходами предприятий пищевой, целлю­лозно-бумажной и текстильной промышленности, коммунально-бытовые воды и стоки с животноводческих ферм.

К органическим загрязнителям со специфической токсичностью относятся нефть и нефтепродукты, смолы, различные карбоциклические соединения, ор­ганические кислоты, спирты и кетоны, органические красители, поверхностно-активные вещества, пестициды.

В зависимости от производственного назначения различают следующие группы пестицидов:

акарициды средства для борьбы с растительноядными клещами;

альгициды для уничтожения водорослей и другой сорной растительно­сти в водоемах;

аттрактанты вещества, привлекающие насекомых;

гербициды для борьбы с сорными растениями;

десиканты и дефолианты для подсушивания растений и удаления листьев;

инсектициды для борьбы с вредными насекомыми;

зооциды – для борьбы с грызунами;

ларвициды для уничтожения личинок насекомых;

моллюскоциды (лимациды) – для борьбы с моллюсками;

репелленты для отпугивания насекомых;

фунгициды для борьбы с грибами.

Большинство пестицидов – сложные органические соединения: хлорорганические, фосфорорганические, карбаматы, ртутьорганические, производные уксусной, масляной, роданистоводородной кислот, фенола, мо­чевины, алкалоиды, а также неорганические соединения, содержащие медь, мышьяк, серу и др.

1. Яды локального действия:

а) неорганические вещества: хлор; перекись водо­рода, марганцовокислый калий, озон, кислоты и ще­лочи, соли тяжелых металлов (марганец, никель, хром, мышьяк, кадмий, свинец, железо, цинк, ртуть, медь, серебро), борная кислота;

б) органические вещества: формальдегид, органиче­ские кислоты и краски, дубильные вещества, детер­генты.

2. Нервно-паралитические яды:

а) неорганические вещества: аммиак и соли аммо­ния, углекислота, щелочные и щелочноземельные ме­таллы, фтор, фосфор;

б) органические соединения: нефть и нефтепро­дукты, фенолы, смолы и дегти, алкалоиды, сапонины, терпены, продукты выщелачивания древесины, токсины водной улитки, хлорорганические, фосфорорганические, производные карбаминовой кислоты, ряд гербицидов и альгицидов.

3. Гемолитические яды: аммиак и соли аммония, сви­нец, цианиды, сапонины, селен, некоторые фосфорорга­нические соединения, диурон, пропанид, токсины некоторых сине-зеленых водорослей.

4. Протоплазматические яды: фтор, цианиды, моче­вина, меркаптаны.

5. Энзиматические (ферментативные) яды: фосфор­органические соединения (хлорофос, карбофос, ацетофос, метилнитрофос, метилмеркаптофос, трихлорметафос-3, фосфамид и др.), фториды, цианиды, сульфат натрия, углекислый газ, гидроксиламин, некоторые детергенты, меркаптаны.

6. Яды наркотического действия: углеводороды (эти­лен, пентан и др.), алкилгалогениды (хлороформ, четыреххлористый углерод, дихлорэтан, трихлорэтилен), алкоголи, эфиры, кетоны, альдегиды (параформальдегид, хлоралгидрат, параальдегид, альдол), нитросоединения.

7. Яды комбинированного действия: аммиак и соли аммония обладают локальным, нервно-паралитаческим и гемолитическим действием; цианиды – ферментатив­ным, гемолитическим, протоплазматическим и незначи­тельным локальным; фтор – локальным, нервно-парали­тическим, протоплазматическим и ферментативным; ФОС – нервно-паралитическим, ферментативным и гемолитическим (в слабой степени); формальдегид – нервно-паралитическим и локальным; сапонины – нерв­но-паралитическим, локальным и гемолитическим дейст­вием.

Симптомы отравления рыб.

С изменением концентрации токси­канта может меняться как степень токсического эффекта, так и повреждения различных тканей, органов и систем организма. Это относится как к минеральным, так и органическим ядам.

Стадии отравле­ния рыб ядами нервного действия:

1. Начало беспокойства. При посадке рыбы в сосуд с чистой водой она ведет себя очень неспокойно: мечется в разные стороны, учащается дыхательный ритм, широко раскрывает рот и отставляет в стороны плавники. Однако уже через 2—3 минуты она успокаи­вается. Подобное же явление наблюдается при посадке рыбы в раствор токсического вещества, так что кратко­временное беспокойство нельзя принимать за начало токсического действия. Но затягивающееся беспокой­ство заставляет предполагать действие яда.

2. Первые признаки расстройства чувст­вительности. После того как пройдет первое бес­покойство, рыба спокойно лежит на дне. Для первых признаков расстройства чувствительности характерно поднятие лучей плавников, затем энергичное вздрагива­ние плавников, судорожное и большей частью поверх­ностное, но частое дыхание; нередко наблюдается не­полное закрытие рта и легкое дрожание челюстей.

3. Стадия повышения или понижения раз­дражимости. Для рыб с повышенной раздражи­мостью характерно стремительное плавание. Внешне даже слабые раздражения вызывают сильную реакцию у рыб, особенно световое раздражение.

4. Первое расстройство равновесия. Наблю­дается опрокидывание рыбы на бок или спину. Различают следующие виды потери равновесия: при предшествующем раздражении сильно напрягаются плавники, что вызывает потерю способности к движе­нию; при понижении чувствительности наступает силь­ное изнеможение и паралич плавников, что вызывает опрокидывание на бок; паралич деятельности плавательного пузыря при сохранности деятельности плавни­ков; нет реакции ни со стороны глаз, ни со стороны плавников. Эти состоя­ния рыб могут переходить одно в другое.

5. Полная потеря равновесия, полная а т а к с и я. В этой стадии рыбы внезапно опрокидываются на бок или спину. При этом следует обращать особое внимание на следующие моменты: а) дышит ли рыба, как часто и глубоко; б) подвижна ли она (дрожание, стремитель­ное плавание, вялые или затруднительные движения или у нее наступает паралич); в) «сознает» ли рыба свое положение (движение глаз, компенсаторное дви­жение плавников); г) наблюдаются ли судороги челю­стей, хвоста или плавников, какова их частота, усиливаются они или ослабевают.

6. Конечная стадия – агония. Полная потеря равновесия переходит постепенно в конечную стадию: многие яды вызывают смерть путем удушья; нервно-паралитические яды вызывают паралич центра дыха­ния. Рыба, погибшая от паралича, почти всегда тускло окрашена, туловище после смерти часто изогнуто.

7. Трупное окоченение. Оно представляет собой пол­ное отвердение тела и всех плавников. Иногда, осо­бенно при смерти от истинного паралича, оно может наступить и тогда, когда дыхание еще продолжается. У таких рыб жаберные крышки и грудные плавники могут двигаться несколько часов, в то время как хвост окоченел. Хроматофоры во время трупного окоченения исчезают и снова появляются; позднее образуются пятна.

Адапта­ция – способность рыб привыкать к определенным ядам. Она зависит от химической природы и концентра­ции яда: более выражена адаптация к ядам органиче­ской природы и почти отсутствует к неорганическим.

Кумуляция – способность вещества накапливаться в организме при многократном поступлении (материаль­ная кумуляция) либо вызывать сенсибилизацию орга­низма к повторным явлениям (функциональная куму­ляция). Большинство протоплазматических и энзиматических ядов (фториды, цианиды, меркаптаны, фосфорорганические соединения, свинец и др.) действует посредством функциональной кумуляции.

Функциональ­ная кумуляция встречается чаще, чем материальная.

В отравлении рыб различают латентную и ле­тальную фазы:

а) латентная фаза – это отрезок времени от момента контакта с ядом до первых симптомов отравления;

б) летальная фаза – это отрезок времени с момента проявления потери равновесия (рыба еще живая, но в ее организме развиваются необратимые процессы); обратимость отравления при переносе в свежую воду не происходит до времени гибели.

Время от латентной до леталь­ной фазы в физиологическом аспекте подразделяют на следующие периоды (в опыте с пограничными концентрациями токсических веществ):

первая фаза – безразличное отношение организма к примеси яда даже при длительном действии раствора. Эта стадия соответствует весьма малым концентрациям токсического вещества;

вторая фаза – стимуляция обмена вещества и всей жизнедеятельности организма, выражающаяся, в част­ности, в увеличении прироста живого веса у рыб;

третья фаза – угнетение обмена веществ, переходя­щее по мере повышения концентрации яда в общую депрессию всех жизненных функций. У рыб, например, это выражается не только в приостановке роста, но и в уменьшении живого веса;

четвертая фаза – частичное отмирание популяции, а именно, гибель тех особей, которые оказались менее резистентны к данным концентрациям (сублетальная зона концентраций);

пятая фаза соответствует действию летальных кон­центраций, вызывающих 100 %-ную гибель подопытных особей данного вида. Последняя фаза – результат острого отравления.

Раз­личают прямую и косвенную группу факторов, влияю­щих на токсичность вещества:

1) факторы, оказывающие прямое влияние на фи­зиологические функции организма (изменение прони­цаемости жабр, кожных покровов и других биологиче­ских мембран) и способствующие быстрому проникно­вению яда;

2) факторы, влияющие на яд, изменяющие его концент­рацию или физико-химические свойства.

Влияние факторов на характер действия сточных вод подразделяют на три основные группы:

1) влияние на свойства загрязняю­щих веществ,

2) на время и условия контакта орга­низма с этими веществами,

3) на чувствительность организмов к загрязнению.

Некоторые факторы могут действовать и по всем трем направлениям. Экологические факторы влияют как на характер действия токсикантов, так и на устойчивость рыб к ядам.

Температура воды. Концентрация токсического ве­щества и время гибели (концентрация – время), харак­теризующие устойчивость рыб, тесно связаны с температурой воды.

Содержание растворенного в воде кислорода. Уста­новлено, что дефицит кислорода в воде влияет на интен­сивность обмена веществ, снижает устойчивость рыб ко многим ядам органической и неорганической природы.

Концентрация водородных ионов (величина рН). Из­менение активной реакции среды в ту или иную сто­рону от нейтральной значительно влияет на устойчивость рыб к ядам, изменяя степень токсичности ядовитых ве­ществ. При этом имеются в виду не крайние величины рН, токсически действующие сами по себе, а те, кото­рые не оказывают какого-либо токсического эффекта.

Жесткость воды. Уже давно установлено, что токси­ческое действие многих солей щелочных, щелочнозе­мельных и тяжелых металлов снижается в жесткой и морской воде. Физико-химически это явление объяс­няется тем, что высокоминерализованные воды, содер­жащие соли кальция, калия, натрия, магния и бария, снижают растворимость токсического вещества, образуя с ними нерастворимые осадки, и токсичность их в де­сятки раз уменьшается.

Из других экологических факторов, влияющих на токсикорезистентность рыб, следует указать на содер­жание в водоеме углекислоты, скорость течения воды, свет.

По чувствитель­ности к ядам рыбы в речной воде делятся на следующие группы:

1-я группа – высокочувствительные: ручьевая фо­рель, радужная форель, лососи.

2-я группа – очень чувствительные: окунь, ерш.

3-я группа – чувствительные: плотва, щука.

4-я группа – слабочувствительные: карп, линь, ка­рась.

Возрастной фактор также немаловажен в определе­нии путей воздействия яда в естественном водоеме как на популяцию в целом, так и на отдельные стадии развития организма. Раньше считалось, что устойчи­вость рыб к токсикантам увеличивается с возрастом и наиболее уязви­мыми стадиями онтогенеза рыб при действии токсиче­ских веществ является стадия личинки и малька. Позже появились сведения, что в небольших концентрациях яда молодь рыб живет дольше, чем взрослая, в то время как при высоких концентрациях не наблюдается заметного возрастного различия в устойчивости к ядам.

Концентрация яда и его природа вызывают у рыб разную реакцию:

а) положительная реакция, когда рыба привлекается на заданный токсический раствор и предпочитает его чистой воде. Такая реакция была обнаружена у колюшек на слабые растворы аммиака (0,001 N), сернокислой меди, в то время как более концентрированные растворы этих веществ они избегали.

б) нейтральная реакция – отсутствие способности рыб отличать токсический раствор от чистой воды. Рыбы плохо различают некоторые вещества, преимущественно действующие на нервную систему (фенол, орто- и паракрезол), а также хлористую ртуть, детергенты (СПАВ — синтетические поверхностно-активные вещества);

в) отрицательная реакция – способность рыбы обнаруживать и избегать растворенные в воде токсические вещества, причем реакция у рыб проявляется на концент­рациях ниже токсических. К таким веществам относятся
азотнокислый свинец, нитрат свинца, нитрат кальция и натрия, сульфат цинка, концентрированные растворы кислот и щелочей (для кислот от рН 5, 4 и ниже, для
щелочей – от рН 11 и выше), дефицит кислорода и повышенное содержание углекислоты, сероводорода и другие соединения.

Синергизм – явление взаи­модействия двух или нескольких компонентов, три котором токсический эффект выше, чем каждого компонента в отдельности.

Антагонизм – отрицательный синергизм, то есть действие компонентов, противоположное друг другу, в результате чего токсический эффект смеси сни­жается. Антагонизм может быть физиологический (про­тивоположное действие на одну и ту же функцию орга­низма) и химический (нейтрализация веществ в резуль­тате химического взаимодействия).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...