Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Функциональные свойства одномодовых волокон.




С точки зрения дисперсии, существующие одномодовые волокна, которые широко ис­пользуются в сетях сегодня, разбиваются на три основных типа:

1)волокна с несмещенной дис­персией SF (стандартные волокна со ступенчатым профилем, рис. 2.13 а),

2) волокна со сме­щенной дисперсией DSF (рис. 2.13 б);

3)волокна с ненулевой смещенной дисперсией NZDSF.

Все три типа волокон очень близки по затуханию в окнах одномодовой передачи 1310 и 1550 нм, но отличаются характеристиками хроматической дисперсии. Дисперсия влияет на максимальную допустимую длину безретрансляционных участков, Многоканальное волновое мультиплексирование (WDM) в окне 1550 нм диктует иной рационализм. Когда длина волны нулевой дисперсии попадает в зону мультиплекс­ного сигнала, начинают проявляться нежелательные интерференционные эффекты, приводя­щие к более быстрой деградации сигнала.

Волокно SF. В начале 80-х годов передатчики на длину волны 1550 нм имели очень вы­сокую цену и низкую надежность и не могли конкурировать на рынке с передатчиками на длину волны 1300 нм. Поэтому стандартное ступенчатое волокно SF (рис. 2.13 а) стало первым коммерческим волокном и сейчас наиболее широко распространено в телекоммуникационных сетях. Оно оптимизировано по дисперсии для работы в окне 1310 нм, хотя и дает меньшее затухание в окне 1550 нм.

Волокно DSF. По мере совершенствования систем передачи на длине волны 1550 нм встает задача разработки волокна с длиной волны нулевой дисперсии, попадающей внутрь этого окна. В итоге в середине 80-х годов создается волокно со смещенной дисперсией DSF, полностью оптимизированное для работы в окне 1550 нм как по затуханию, так и по диспер­сии. На протяжении многих лет волокно DSF считается самым перспективным волокном. С приходом более новых технологий передачи мультиплексного оптического сигнала большую роль начинают играть эрбиевые оптические усилители типа EFDA, способные усиливать мно­гоканальный сигнал. К сожалению, более поздние исследования (в начале 90-х годов) пока­зывают, что именно длина волны нулевой дисперсии (1550 нм), попадающая внутрь рабочего диапазона эрбиевого усилителя, является главным потенциальным источником нелинейных эффектов (прежде всего, четырехволнового смешивания), которые проявляются в резком возрастании шума при распространении многоканального сигнала.

Дальнейшие исследования подтверждают ограниченные возможности DSF при исполь­зовании в системах WDM. Чтобы избежать нелинейных эффектов при использовании DSF в WDM системах, следует вводить сигнал меньшей мощности в волокно, увеличивать расстоя­ние между каналами и избегать передачи парных каналов (симметричных относительно l0).

Четырехволновое смешивание - это эффект, приводящий к рассеянию двух волн с об­разованием новых нежелательных длин волн. Новые волны могут приводить к деградации распространяемого оптического сигнала, интерферируя с ним, или перекачивать мощность из полезного волнового канала. Именно из-за эффекта четырехволнового смешивания стало яс­но, что необходимо разработать новый тип волокна, в котором l0 располагалось бы вдали, то есть, по одну сторону (левее или правее) от всех возможных каналов.

Волокно NZDSF создается в начале 90-х годов с целью преодолеть недостатки волокна DSF, проявляющиеся при работе с мультиплексным оптическим сигналом. Известное также как l - смещенное волокно, оно имеет особенность в том, что длина волны нулевой дисперсии вынесена за пределы полосы пропускания эрбия. Это уменьшает нелинейные эффекты и уве­личивает характеристики волокна при передаче DWDM сигнала.

Ступенчатое одномодовое волокно (SF) (исп-ся: протяженные сети (Ethernet, Fast/Gigabit Ethernet, FDDI, ATM), магистрали SDH)). Диаметр светонесущей жилы составляет 8-10 мкм и сравним с длиной световой волны. В таком волокне при достаточно большой длине волны света l>lCF (l>lCF - длина волны отсечки) распространяется только один луч (одна мода). Одномодовый режим в одномодовом волокне реализуется в окнах прозрачности 1310 и 1550 нм. Распространение только одной моды устраняет межмодовую дисперсию и обеспе­чивает очень высокую пропускную способность одномодового волокна в этих окнах прозрач­ности. Наилучший режим распространения с точки зрения дисперсии достигается в окрестно­сти длины волны 1310 нм, когда хроматическая дисперсия обращается в ноль. С точки зрения потерь это не самое лучшее окно прозрачности. В этом окне потери составляют 0,3-0,4 дБ/км, в то время как наименьшее затухание 0,2-0,25 дБ/км достигается в окне 1550 нм.

В одномодовом волокне со смещенной дисперсией (DSF) (исп-ся: сверхпротяженные сети, супермагистра­ли (SDH,ATM)) длина волны, на которой ре­зультирующая дисперсия обращается в ноль, - длина волны нулевой дисперсии l0 - смеще­на в окно 1550 нм. Такое смещение достигается благодаря специальному профилю показате­ля преломления волокна. Таким образом, в волокне со смещенной дисперсией реализуются наилучшие характеристики как по минимуму дисперсии, так и по минимуму по­терь. Единственная рабочая длина волны берется близкой к 1550 нм.

Одномодовое волокно с ненулевой смещенной дисперсией NZDSF (исп-ся: сверхпротяженные сети, супермагистра­ли (SDH,ATM), полно­стью оптические сети) в отличие от DSF оп­тимизировано для передачи не одной длины волны, а сразу нескольких длин волн (мультип­лексного волнового сигнала).

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...