АСГ (алгоритм синхронного группообразования)
В SDH вводится много новых концепций, из которых наиболее важны виртуальный контейнер, секция, тракт и маршрут. 1. Виртуальный контейнер (Virtual Container; VC) – циклически повторяющаяся информационная структура, предназначенная для "транспортировки" в сети SDH стандартных цифровых потоков PDH. В зависимости от скорости передачи "транспортируемых" потоков организуются виртуальные низкого порядка (LOVC; Low Order VC) и высокого порядка (HOVC; High Order VC). Виртуальные контейнеры, передаваемые и принимаемые в структуре транспортной сети, называются трейлами (trail) VC. 2. Регенерационная секция (Regenerator section, RS) – часть среды передачи между оконечным оборудованием линейного тракта и регенератором или между двумя регенераторами 3. Мультиплексорная секция (Multiplex section, MS) – среда передачи между двумя смежными линейными трактами, в одном из которых организуется STM-сигнал, а в другом оканчивается. 4. Тракт (Path) – логическое соединение между точкой, в которой "собирается" VC и точкой, в которой VC "разбирается". В зависимости от VC тракты могут быть низкого порядка и высокого порядка. 5. Маршрут (Route) – совокупность каналов, трактов и секций. Маршрут включающих в себя средства передачи сигналов и OAM-средства и обеспечивает целостность передаваемой информации. Рекомендации G.708 и G.709 предусматривают использование следующих элементов: 1. C-n – Контейнер (Container) 2. VC-n – Виртуальный контейнер 3. TU-n – Трибутарный (транспортный) блок (Tributary Unit) 4. TUG-n – Группа транспортных блоков (Tributary Unit Group) 5. AU-n – Административный блок (Administrative Unit) 6. AUG – Группа административных блоков (Administrative Unit Group) 7. STM-N – Синхронный транспортный модуль
- Т-n, Е-n - стандартные каналы доступа или трибы уровня n входные потоки (или входы) SDH мультиплексора.
- С-n - контейнер уровня n - элемент SDH, содержащий триб Т-n, т.е. несущий в себе информационную нагрузку соответствующего уровня иерархии PDH; контейнеры уровня n разбиваются на следующие контейнеры подуровней C-nm: - С-1 - разбивается на контейнер С-11, инкапсулирующий триб Т1=1.5 Мбит/с, и контейнер С-12, инкапсулирующий триб Е1=2 Мбит/с; - С-2 - разбивается на контейнер С-21, инкапсулирующий триб T2=:6 Мбит/с и контейнер С-22, инкапсулирующий триб Е2=8 Мбит/с; - С-3 - разбивается на контейнер С-31, инкапсулирующий триб Е3=34 Мбит/с и контейнер С-32, инкапсулирующий триб Т3=45 Мбит/с; - С-4 не имеет контейнеры подуровней и инкапсулирует триб Е4=140 Мбит/с. К контейнеру добавляется маршрутный заголовок. В результате от превращается в виртуальный контейнер VC уровня n, т.е. VC-n. В номенклатуре элементов иерархии SDH существуют следующие виртуальные контейнеры: - VC-1, VC-2- виртуальные контейнеры нижних уровней 1 или 2 и VC-3, VC-4- виртуальные контейнеры верхних уровней 3 или 4 - элементы SDH, структура которых или формат достаточно прост и определяется формулой: VC=РОН + PL, где РОН- маршрутный заголово ); PL- полезная нагрузка. Виртуальные контейнеры VC-1,2,3 уровней 1, 2, 3, также как и контейнеры С-1,2,3, разбиваются на виртуальные контейнеры подуровней nm, т.е. VC-nm, а именно: - VC-1 разбивается на VC-11 и VC-12; - VC-2 разбивается на VC-21 и VC-22; - VC-3 разбивается на VC-31 и VC-32. Поля PL и РОН формата виртуального контейнера как логического элемента имеют вид: - PL - поле различного (в зависимости от типа виртуального контейнера) размера, формат которого имеет двумерную структуру по типу фрейма вида 9хm» (9 строк, m столбцов); это поле формируется либо из контейнеров соответствующего уровня (например, для виртуальных контейнеров VC-1,2 оно формируется из контейнеров С-1,2 соответственно), либо из других соответствующих элементов структуры мультиплексирования SDH (см. ниже);
- РОН - поле, размером не более 9 байт, формат которого имеет двумерную структуру вида 1хn (например, формат 1х9 байт для VC-4 или VC-32 и формат 1х6 байт для VC-31); это поле составлено из различных по назначению байтов (см. ниже). - TU-n - трибные блоки уровня n (п=1,2,3) - элементы структуры мультиплексирования SDH, формат которых прост и определяется формулой: PTR + VC, гдеPTR- указатель трибного блока (TU-n PTR), относящийся к соответствующему виртуальному контейнеру, например, TU-1 = (TU-1 PTR) + VC-1. Трибные блоки уровня n, как и виртуальные контейнеры, делятся на трибные блоки подуровней nm, т.е. TU-nm, а именно: - TU-1 разбивается на TU-11 иТи-12; - TU-2 разбивается на TU-21 и TU-22; - TU-3 разбивается на TU-31 и TU-32. - TUG-n - группа трибных блоков уровня n (первоначально использовался только уровень 2, а затем добавился уровень 3), формируемая в результате мультиплексирования нескольких трибных блоков. - TUG-2- группа трибных блоков уровня 2 - элемент структуры мультиплексирования SDH, формируемый путем мультиплексирования трибных блоков TU-1,2 со своими коэффициентами мультиплексирования; TUG-2 также, как и TU-1,2 разбивается на 2 подуровня - TUG-21 и TUG-22.
Из этой схемы видны варианты мультиплексирования группы трибных блоков TUG-2: - TUG-21 формируется или из одного TU-21 (вариант 1xTU-21) или из четырех TU-11 (вариант 4xTU-11), или из трех TU-12 (вариант 3xTU-12); - TUG-22 формируется аналогично: 1xTU-22 или 4xTU-12, или 5xTU-11. В свою очередь выходы TUG-21 и TUG-22 могут быть мультиплексированы для формирования полезной нагрузки контейнеров верхних уровней С-3,4 в соответствии со схемой на рис.2-2 и указанными на ней коэффициентами. Схема формирования виртуальных контейнеров верхнего уровня может быть теперь конкретизирована. - VC-3 - виртуальный контейнер уровня 3 - элемент структуры мультиплексирования SDH, который разбивается на два виртуальных контейнера: VC-31 и VC-32 - поля формата 9х65 байтов - для VC-31, и поля формата 9х85 байтов - для VC-31; полезная нагрузка VC-3 формируется либо из одного контейнера С-3 (прямой вариант схемы мультиплексирования), либо путем мультиплексирования нескольких групп TUG-2, а именно: - VC-31 формируется как 1хС31 или 4xTUG-22, или 5xTUG-21; - VC-32 формируется как 1хС32 или 7xTUG-22.
-VC-4- виртуальный контейнер уровня 4 - элемент структуры мультиплексирования SDH, который не разбивается по подуровням и представляет собой поле формата 9х261 байтов; его полезная нагрузка формируется либо из контейнера С-4 (прямой вариант схемы мультиплексирования), либо путем мультиплексирования нескольких групп TUG-2 и TU-3, а именно: VC-4 формируется как 1хС4 или 4xTU-31, или 3xTU-32, или 21xTUG-21, или 16xTUG-22. Виртуальные контейнеры верхних уровней VC-3,4 позволяют сформировать соответствующие административные блоки: - AU-3- административный блок уровня 3 - элемент структуры мультиплексирования SDH формата PTR + PL, разбивается на два подуровня AU-31 и AU-32, полезная нагрузка которых PL формируются из виртуального контейнера VC-31 или VC-32 соответственно; - PTR - указатель административного блока - AU-3 PTR (AU-31 PTR или AU-32 PTR) определяет адрес начала поля полезной нагрузки, а именно VC-31, VC-32 в результате получаем: - AU-31 = AU-31 PTR + VC-31; - AU-32 = AU-32 PTR -+- VC-32. - AU-4 • административный блок уровня 4 - элемент структуры мультиплексирования SDH формата PTR + PL, не имеет подуровней, PTR - указатель административного блока - AU-4 PTR (поле формата 9х1 байтов, соответствующее четвертой строке поля секционных заголовков SOH фрейма STM-N), определяет адрес начала поля полезной нагрузки; полезная нагрузка PL формируются либо из виртуального контейнера VC-4 (прямой вариант схемы мультиплексирования), либо в результате мультиплексирования другими возможными путями, а именно: AU-4 формируется как 1xVC-4 или 4xVC-31, или 3xVC-32, или 21xTUG-21, или 16xTUG-22, причем фактически для передачи VC-31,32 и TUG-21,22 используется поле полезной нагрузки VC-4, в котором при размещении VC-32 и TUG-22 четыре левых столбца (4х9 байтов), а при размещении TUG-21 - восемь столбцов (8х9 байт), используются под фиксированные выравнивающие наполнители. Два последних элемента SDH - AUG и STM-1 определены ниже. -AUG- группа административных блоков - элемент структуры мультиплексирования SDH, появившийся во второй публикации стандарта G.709 [18, редакция 1991], формируется путем мультиплексирования административных блоков AU-3,4 с различными коэффициентами мультиплексирования: AUG формируется как 1xAU-4 или 4XAU-31, или 3xAU-32; AUG затем и отображается на полезную нагрузку STM-1.
-STM-1- синхронный транспортный модуль - основной элемент структуры мультиплексирования SDH, имеющий формат вида: SOH + PL, где SOH- секционный заголовок - два поля в блоке заголовка размером 9х9 байтов (структуру SOH см. ниже), PL- полезная нагрузка, формируемая из группы административных блоков AUG (в схеме первой публикации стандарта [18, редакция 1988], вместо связки блоков AUG и STM-1 был только модуль STM-1, описанный как блок, формируемый путем мультиплексирования AU-3,4 с различными коэффициентами мультиплексирования (то, что делает сейчас блок AUG) и добавления секционного заголовка ЗОН).
***** 1. C-n – информационная структура, являющаяся базовым элементом сигнала STM, представляет собой группу байтов, выделенных для переноса сигналов со скоростями по рекомендации G.702. Т.е. то, что мы имеем на входе в SDH-мультиплексор. Контейнер представляет собой информационную структуру, которая стандартизирует емкости каналов передачи для существующих PDH сигналов, ячеек ATM и других возможных сигналов и кадров. Данная информационная структура, формирует синхронную с сетью информационную нагрузку для виртуального контейнера. Кроме информационных битов, контейнер содержит биты выравнивания для синхронизации сигнала PDH по частоте тактового сигнала SDH (согласование скоростей), а также другие стаффинг-биты. Таблица 2.1 - Контейнеры, используемые для передачи сигналов PDH
Контейнеры обозначают буквой C, за которой следует одна или две цифры. Первая цифра идентифицирует иерархический уровень плезиохронного потока, вторая указывает на иерархичность плезиохронного уровня, который среди двух стандартов (американского и европейского) обладает более высокой скоростью цифрового потока. В таблице 2.1 не приведен сигнал европейской PDH со скоростью 8,448 Мбит/с. Так как в настоящее время контейнер C-2 предназначен для транспортировки не сигналов PDH, а сигналов с неиерархическими скоростями (например, ячеек АТМ). Поэтому прямой ввод в аппаратуру SDH сигнала PDH 8,448 Мбит/с не применяется. 2. VC-n – информационная структура, состоящая из информационной посылки – полезной информации (payload) и дополнительных байтов маршрута – трактового заголовка (Path Overhead, POH). POH вводится для управления маршрутом VC и выполнения функций OAM. С помощью POH компенсируют колебания фазы и отклонения тактовой частоты вводимых VC-n, относительно STM-N или VC-n высшего порядка и указывают начало их циклов. Позиции указателей в VC-n являются строго фиксированы. Таким образом, всегда известно начало цикла информационной нагрузки, что обеспечивает ввод/вывод VC-n без переформирования многоканального сигнала, то есть обеспечивается прямое мультиплексирование сигналов в линейный тракт.
При помощи VC-n стандартные потоки PDH и другие сигналы транспортируются по сети SDH. Данная информационная структура используется для организаций соединений на уровне трактов сетевой модели SDH. VC-n является маршрутизируемым блоком данных транспортной сети. Контейнеры обозначают - VC, за которой следует одна или две цифры, соответствующие контейнеру C-n, который может быть введен в данный VC-n. При этом номер отображает скоростной режим компонентных данных. VC-n служат в качестве сетевых трактов SDH. В зависимости от вида тракта VC имеет период повторения 125 мкс или 500 мкс. Именно VC-n передаются по линейным трактам и переключаются в сетевых узлах. Сетевая обработка (ввод/вывод, оперативные переключения) VC-n выполняется независимо от вида их нагрузки. В пункте назначения сигналы нагрузки "выгружаются" из контейнеров в исходном виде. В зависимости от объема цифровой информации в потоках PDH разработаны соответствующие типы VC, которые разделяют LOVC и HOVC. При этом VC-11, VC-12 и VC-2 являются виртуальными контейнерами низкого порядка, VC-4 – высокого порядка, а VC-3 является виртуальным контейнером низкого порядка, если формируется из C-3 и высокого порядка, если формируется из виртуальных контейнеров низкого порядка (например, из VC-12). Виртуальные контейнеры низкого порядка формируются из контейнеров С-n и POH. В виртуальные контейнеры высокого порядка вместо С-n может входить TUG-n. В таблице 2.2 приведены предельные скорости сигналов Vm, которые можно передавать по VC. Величину Vm также называют емкостью VC. Таблица 2.2 - Предельные скорости сигналов, передаваемых по VC-n
3. TU-n – информационная структура, обеспечивающая согласование между уровнем трактов нижнего порядка и уровнем трактов высшего порядка. В разных изданиях транспортный блок также называют субблоком, трибутарным или компонентным блоком. TU-n, где n варьируется от 1 до 3, состоит из информационной нагрузки – VC низшего порядка и указателя TU (Pointer, TU PTR). Процедура формирования TU предусмотрена для дальнейшего объединения (мультиплексирования) одинаковых и различных VC, в которые данные помещаются, начиная с некоторой адресуемой позицией (номера байта), записываемый в PTR, который показывает смещение между началом цикла LOVC и началом цикла HOVC. Это обусловлено необходимостью последующего побайтного мультиплексирования. Таким образом, разнородная нагрузка, помещаемая в VC-n, которые между собой не обязательно согласованы во времени (по фазе), преобразуется в стандартные мультиплексируемые блоки данных. Функцией транспортного блока является подготовка к объединению однородных VC-n в группы. 4. TUG-n – информационная структура, состоящая из одного или нескольких TU-n, занимающих фиксированные позиции в нагрузке VC-n высокого порядка. TUG-n, где n=2 или n=3, является группой идентичных TU-n или TUG-n, позволяющая осуществлять смешение полезной нагрузки для увеличения гибкости транспортной сети. TUG-2 состоит из однородной совокупности TU-11, TU-12 или TU-2, TUG-3 состоит из однородной совокупности TUG-2 или TU-3. При помощи TUG объединяются однородные потоки, находящиеся в TU низкого иерархического уровня в одну группу. Мультиплексирование цифровых потоков осуществляется побайтно. 5. AU-n – информационная структура, состоящая из виртуального контейнера высокого порядка и указателя AU (AU PTR), который занимает фиксированное место в цикле STM-N и показывает смещение кадра VC относительно начала кадра STM-N. AU-n обеспечивает адаптацию между информационной посылкой (VC высокого порядка) и STM-N. Используется для дальнейшего укрупнения блоков данных и передачи (транспортировки) их по физической среде. AU обеспечивает сопряжение уровня трактов высшего порядка и уровня секции мультиплексирования на сетевой модели SDH. Определены два вида административных блоков: AU-4, состоящий из VC-4 и AU PTR, и AU-3, состоящий из VC-3 и AU PTR. 6. AUG – информационная структура, состоящая из однородной совокупности AU-4 или трех AU-3, занимающая фиксированное положение в нагрузке STM. Три AU-3 объединяются в AUG мультиплексированием с чередованием байтов (byte interleaved multiplexing), а AU-4 "преобразуется" в AUG без изменений. В результате формируется единый стандартный блок для дальнейшего преобразования в STM-N. 7. STM-N – информационная структура, состоящая из информационной нагрузки и секционного заголовка, объединенных в блочную цикловую структуру с периодом повторения 125 мкс. Данная информация соответственно подготовлена для последовательной передачи со скоростью, синхронизированной с сетью. STM-N содержит n групп AUG и секционный заголовок (Section Overhead, SOH), с информацией касающейся кадрирования, обслуживания и работы (цифровой синхросигнал, байты оценки вероятности ошибки, каналы для передачи сигналов управления, идентификатор STM, служебные каналы со скоростью передачи 64 кбит/с). SOH состоит из RSOH (Regenerator SOH), формирующегося в регенерационной секции и MSOH (Multiplexer SOH) формирующегося в мультиплексорной секции. На рисунке 2.1 показано размещение вышерассмотренных элементов структуры мультиплексирования на сетевой модели SDH.
Рисунок 2.1 - Место элементов структуры мультиплексирования на сетевой модели SDH
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|