Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Абстрактные типы данных.




Абстрактным принято называть тип данных, в явном виде не имеющийся в языке программирования, в этом смысле это понятие относительное - тип данных, отсутствующий в одном языке программирования, может присутствовать в другом.

Абстрактный тип данных (АТД) определяется независимо от способа его реализации:

§ множеством возможных значений этого типа,

§ и набором операций со значениями этого типа.

Использование АТД может быть ограничено этапом разработки программного обеспечения, но для его явного использования в программе надо иметь его реализацию на основе уже имеющихся (и ранее реализованных) типов данных в языке программирования:

§ способ представления значений этого типа,

§ и реализацию операций со значениями этого типа.

АТД не является предопределенным в языке программирования, и даже более того – операции конструирования таких типов, предопределенные в языке, перекладывают на разработчика-программиста вопрос о способе представления значений такого типа и реализации операций со значениями этого типа. А потому, для таких типов данных вопрос о выборе определений и способов реализации операций вида конструктор (значений и хранилищ данных) такого типа, селектор и модификатор компонентов (значений и хранилищ данных) такого типа возлагается на разработчика-программиста.

В концепции АТД особый статус имеют понятия интерфейс, открытый пользователю, и реализация, скрытая от него. Особая роль этих понятий в концепции АТД связана с основополагающим положением о независимости понятия АТД от способа его реализации.

В современных «практических языках программирования» для конструирования АТД обычно используется предопределенная операция конструирования типов class, которая дает разработчику-программисту не только средства группировки данных и операций (с этими данными) в единое целое, но и средства инкапсуляции, наследования и полиморфизма для управления способами конструирования и доступа к таким данным. Отметим, что класс описывает одну возможную реализацию АТД, отображение класса в АТД выражается функцией абстракции, но обратное отношение, обычно, не является функциональным, реализаций одного и того же АТД может быть несколько.

В исследованиях по абстрактным типам данных уже на раннем этапе была осознана важная роль понятия «параметризация типа». Действительно, например АТД «Стек» не зависит от типа элементов стека, но реализовать этот АТД указанием на «элементы какого-то одинакового типа» невозможно. В язык программирования Ada соответствующие средства конструирования параметризованных типов данных были включены изначально, а в современных «практических языках программирования» какие средства появились только со времен появления разработки по STL-библиотеке [9]. На сегодня понятие «обобщенное программирование» занимает значимое положение в практическом программировании благодаря включению в «практические языки программирования» средств конструирования параметризованных типов данных (шаблоны, template, generic).

Всё вышесказанное означает, что с методологической и теоретической точки зрения необходимо более детальное точное определение понятия «абстрактный тип данных». В теории понятие «абстрактный тип данных» обычно определяется как многосортная (многоосновная) алгебраическая система, в которой дополнительно к множеству возможных значений (носителю) и набору операций над такими значениями выделены понятия:

§ Сорт и сигнатура – эти понятия позволяют расклассифицировать и элементы носителя и операции с ними по их типам (для операций - по типам их аргументов и возвращаемого значения).

§ Предикаты – отношения на элементах носителя. Это позволяет определять область возможных значений наложением ограничений (требований) на допустимые значения, а также в естественной трактовке работать с произвольными логическими выражениями, не принуждая интерпретировать их как функции принадлежности для множеств или как многозначные операции.

На такой основе можно рассматривать абстрактные типы данных с единой целостной логико-алгебраической точки зрения, включая вопросы о конструкторах (типов и значений), селекторах и модификаторах свойств для объектов такого типа [10; 11; 12].

Понятия «структура данных» и «абстрактный тип данных» в чем-то очень близкие. Можно конечно считать, что эти понятия - просто два взгляда на одно и то же. Способ представления значений АТД всегда основан на некоторой структуре данных, менее или более сложной, и реализация операций с такими значениями естественно зависит от этой выбранной структуры данных. С другой стороны, заинтересовавшую нас структуру данных при большом желании мы всегда можем оформить как АТД.

Но все же мы будем различать эти два понятия, учитывая:

§ Абстрактный тип данных - подразумевает определенный уровень абстрагирования с целью фиксации прикладного (предметно-ориентированного) типа данных безотносительно к способам его реализации, и возможно включения этого типа данных в прикладную библиотеку, ну хотя бы для конкретной разработки конкретной программной системы. АТД может иметь несколько альтернативных реализаций, основанных на различных структурах данных.

§ Структура данных - скорее некоторая схема организации данных и управления ими, которая предполагает соответствующие конкретизации при ее использовании в конкретных ситуациях при решении конкретных задач.

К абстрактным типам данных прежде всего естественно относятся математические базовые алгебраические системы – последовательности, множества, отношения и отображения (функциональные отношения, функции) [11; 12]. Но в программировании на переднем плане не исследование общих свойств этих математических понятий, а возможности их использования в разработке моделей решения задач предметной области, алгоритмов решения этих задач и эффективной реализации разработанных алгоритмов. А потому в программировании в виде АТД обычно оформляются с одной стороны ограниченные варианты этих базовых алгебраических систем, а с другой стороны расширенные специализированными наборами операций, представляющими прагматический интерес с точки зрения области применения.

 

2.1. Последовательность (Sequence). [13 гл.4,5,11.1; 7 п.2.1-4; 3 гл.3-4; 4 п.10.1-3.]

Бесконечная (конечная) последовательность формально определяется как функция, областью определения которой является множество положительных целых чисел: f(i)= , . Во многих случаях индексирование последовательности более удобно начинать с нуля; тогда областью определения / будет множество целых неотрицательных чисел. Аналогично определим конечную последовательность или список как функцию, областью определения которой является множество {1, 2,..., }.

Концепция последовательности, в которой элементы следуют друг за другом, в программировании является фундаментальной. Последовательность встречается в построковом выводе кода компьютерной программы, где порядок команд определяет выполняемые программой действия. Последовательность сетевых пакетов составляет сообщение электронной почты, поскольку сообщение будет иметь смысл только при приеме пакетов в той же последовательности, в которой они отправлены. Последовательности представляют такие важные отношения между объектами, как «следующий» и «предыдущий». Кроме того, последовательности зачастую используются для реализации других структур данных, то есть они представляют собой блоки, на которых базируется проектирование таких структур.

¨ Множество возможных значений – конечные последовательности элементов одинакового типа.

¨ Набор операций:

§ Вставить элемент в последовательность.

§ Удалить элемент из последовательности.

§ Посмотреть – функция, возвращающая значение элемента последовательности.

Разновидности этого вида АТД различаются способом доступа к элементам последовательности и ограничениями на место вставки и удаления элементов.

Для АТД этого вида стек (stack), очередь (queue) и дек (deque от Double Ended Queue - двусторонняя очередь ) характерно разрушающее чтение, т.к. доступ к элементам (для всех трех операций) ограничен одним из концов последовательности и операцию «посмотреть другой элемент» можно выполнить, только удалив мешающие этому элементы. Для АТД вектор(array, vector),файл (file) и линейный список (linear list) ограничения на доступ обеспечивают неразрушающее чтение, поэтому особое значение имеет (производная) операция просмотра последовательности.

Ограничения на доступ к элементам последовательности естественно отражаются на семантике основных операций. Последовательный доступ основан на понятии текущая позиция и допускает доступ (перемещение, навигацию) к одному (или к обоим) из концов последовательности и к соседней позиции (слева, справа или к обеим) относительно текущей. Место применения основных операций в этом случае обычно привязывается к текущей позиции. Прямой (позиционный, произвольный) доступ основан на глобальном понятии позиция элемента в последовательности и обеспечивает непосредственный доступ к элементу, если известна его позиция. Например, в АТД динамический вектор (dynamic array, vector), позиция – это индекс элемента. Но в других реализациях других видов последовательностей идентификатор позиции может быть реализован иначе.

Понятия «номер» и «позиция» элемента – близкие, но могут не совпадать:

§ Номер - это собственно порядковый номер элемента в последовательности. Но порядковый номер элемента изменяется в результате выполнения операций вставки и удаления предшествующих элементов, это создает ряд неудобств в идентификации элементов последовательности.

§ Позиция - аналогична порядковому номеру в том смысле, что для элемента в заданной позиции позволяет говорить о предшествующем и следующем элементе последовательности (и их позиции). Но значение позиции элемента не изменяется в результате выполнения операций вставки и удаления предшествующих элементов, поэтому значение позиции элемента можно сохранить и использовать для доступа к этому элементу в будущем. Например, в реализации последовательности связным списком понятие «позиция» может быть представлено указателем на элемент, а в других реализациях может быть представлено идентификатором другого вида, специально поддерживаемым реализацией.

Для АТД «Последовательность» представляют интерес дополнительные операции вида: сцепить две последовательности, расцепить на две последовательности. Например, в АТД строка(string) такого вида операции фактически являются основными.

Для различных видов АТД «Последовательность» достижима различающаяся эффективность реализации различных операций. Например, если реализация предлагает эффективный прямой доступ к элементам последовательности, то скорее всего – время выполнения операции вставки в середине последовательности оставляет желать лучшего. Различные виды (и реализации) АТД «Последовательность» выдвигают программисту различные предложения и по составу операций и по эффективности их реализации. А потому в практике программирования обычно больший интерес представляют не столько универсальные варианты этого (как и других) АТД, а скорее специализированные, и программист должен проводить соответствующий выбор с учетом их использования в решении задач предметной области.

2.2. Множество (Set). [7 гл.4.1-4; 13 п.10.2; 2 гл.4.]

¨ Множество возможных значений – конечные множества элементов одинакового типа.

¨ Набор операций:

§ Вставить элемент во множество.

§ Удалить элемент из множества.

§ Принадлежать – функция, возвращающая значение true, если элемент принадлежит множеству.

Для такого фундаментального понятия классической математики представляется естественным расширить набор операций до типового классического. Но по ряду причин прагматического характера в программировании такое АТД общего (универсального) вида представляет ограниченный интерес. Например, включение операции объединения пересекающихся множеств, при реализации требует удаления элементов пересечения. Это может значительно усложнить реализацию этой операции. С другой стороны наличие дубликатов может быть некритичным с позиции решаемой задачи, в этом случае АТД представляют собой мультимножества. Фундаментальное значение понятия множества, конечно, проявляется наличием богатого набора специализированных расширений этого базового АТД «Множество», которые широко используются в практике программирования, как благодаря мощной выразительной силе этого инструментария в разработке модели задач и алгоритмов их решения, так и благодаря наличию эффективных методов реализации этих АТД.

Специализированные расширения АТД «Множество» рассматриваются в различных направлениях:

§ Близким к понятию «множество» является понятие «набор». Набор (Bag, MultiSet) [9] – также как и множество является семейством элементов, безотносительно к тому задано ли на элементах отношение порядка[14], но элементы в наборе могут повторяться по значению. Вообще говоря, набор можно представить множеством, например, элементы которого являются парами [значение элемента, количество вхождений в набор].

§ В практических приложениях часто элементы множеств идентифицируются, т.е. элемент является парой [ключ элемента, собственно значение элемента], АТД «Словарь» - пример такого специализированного расширения АТД «Множество». Предпочтительный случай, когда ключ элемента – уникальный, т.е. множество не может содержать двух элементов с одинаковым ключом. Но возможно, что используемый ключ неуникальный, т.е. неоднозначно идентифицирущий собственно значение элемента. Вообще говоря, множество (и набор) с неуникальным ключом можно представить множеством с уникальным ключом, усложнив тип значения элемента, например, рассматривая в качестве значения элемента множество значений предыдущего типа (с одинаковым ключом).

§ Естественным представляется задание на множестве отношения порядка, частичного или линейного, АТД «Очередь с приоритетом» - пример такого специализированного расширения АТД «Множество». Аналогично в предметной области решаемой задачи могут представлять интерес и другие отношения на множестве [17].

§ Фундаментальное положение в математике занимает понятие отношение эквивалентности и соответственно – понятие разбиение множества на классы эквивалентности. Естественно, что это понятие широко используется и в практических разработках моделей решения задач предметных областей. АТД «Семейство непересекающихся множеств» (Disjoint Sets, Partitions, Разбиения) - пример соответствующего специализированного расширения АТД «Множество».

Для специализированных расширений АТД «Множество» естественно соответствующим образом уточняются вышеотмеченные операции и появляются свои новые операции, представляющие интерес.

2.3. Словарь (Dictionary, Map), другое название – ассоциативный массив [7 п.4.5-8; 3 гл.12; 2 п.4.10; 13 гл.8.].

¨ Множество возможных значений – конечные множества элементов одинакового типа, вида [Key, Value], где Key – уникальный ключ элемента, Value - собственно значение.

¨ Набор операций:

§ Вставить элемент (с ключом) во множество.

§ Удалить элемент (заданный ключом) из множества.

§ Найти элемент – функция, возвращающая по ключу значение элемента или «пустое» значение, если элемента с таким ключом нет во множестве.

АТД «Словарь» - это специализированный вариант понятия (хранимое) отображение (ключей в значения), широко используемый в практическом программировании. Но для некоторых предметных областей возможно более удобным окажется оформление АТД «Отображение» (Mapping), более близкое классическому математическому определению [7 п.2.5,4.9.].

2.4. Очередь с приоритетом (Priority queue). [7 п.4.10-11, п.5.6; 3 гл.9; 4 п.6.5; 2 п.4.10-13; 13 гл.7.]

¨ Множество возможных значений – конечные множества элементов одинакового типа. На множествах (возможных значениях) задано отношение линейного порядка, которое трактуется как сравнение элементов по приоритетности. Уровень приоритета может быть выделен как составная часть значения элемента или вычислим заданной функцией от значения элемента.

Отметим, что такое множество возможных значений можно трактовать и как множество последовательностей (с перечислением её элементов в заданном линейном порядке).

¨ Набор операций:

§ Вставить элемент в (линейно упорядоченное) множество.

§ Удалить минимальный [15] элемент из множества.

§ Найти минимальный – функция, возвращающая значение минимального элемента во множестве.

Рассматриваются также (существенные) вариации этого АТД с дополнительными операциями:

§ Расцепить очередь на две по заданному значению (приоритету) элемента – на очередь элементов с меньшим приоритетом и очередь остальных.

§ Сцепить две очереди, у одной из которых все элементы имеют приоритет больший, чем у всех элементов другой очереди в одну очередь с приоритетом без сохранения исходных сцепляемых очередей.

§ Объединить два непересекающихся упорядоченных множества (слить две такие очереди) в одно упорядоченное множество (одну очередь с приоритетом), также без сохранения исходных объединяемых.

§ Уменьшить значение (приоритет) заданного элемента.

§ Удалить (произвольно) заданный элемент из множества.

2.5. Непересекающиеся множества (Disjoint Sets, Partitions, Разбиения) [7 п.5.5; 4 гл.21; 2 п.4.6-8.].

¨ Множество возможных значений – конечные множества (семейства) непересекающихся конечных множеств. Элементы семейства идентифицированы, т.е. каждое множество из семейства имеет (уникальное) имя.

¨ Набор операций:

§ Объединить(А,В) – операция вида А:= А È В без сохранения исходных объединяемых множеств (а значит новое значение семейства останется семейством непересекающихся множеств, причем их количество уменьшится).

§ Найти множество – функция, возвращающая для заданного х имя такого множества Х в семействе, что х Î Х.

2.6. Деревья, графы и отношения общего вида. [13 гл.6,12; 7 гл.3, п.4.12, гл.6-7; 3 гл.17.]

В дискретной математике особое внимание уделяется (конечным) отношениям вида - дерево, граф и сеть (мультиграф, гиперграф), имеющим определенно выраженную геометрическую трактовку:

¨ Граф – (конечное) бинарное отношение (симметричное – в случае неориентированных графов), E Í V2, где V – множество вершин, а E – множество ребер графа.

В дискретной математике обычно E определяется не как множество, а как набор ребер графа, это позволяет рассматривать графы, в которых пару вершин может связывать несколько ребер (например, как-то по-разному помеченных).

¨ Дерево – это бинарное отношение (строгого) частичного порядка, дополнительно удовлетворяющее требованиям (иерархичности, древесности):

§ из того, что х<у,z следует, что у и z сравнимы, т.е. либо у£z либо z£у (х<у трактуется как: х встречается раньше у в пути к корню дерева, х – потомок, у - предок);

§ во множестве V (вершин дерева) существует наибольший элемент (корень дерева).

Деревья можно различать, если порядок сыновей (хотя бы для одной) вершины дерева различен. Упорядоченное дерево – дерево, в котором для каждой вершины задан порядок на множестве дочерних вершин, т.е. детей можно определить как первый, второй и т.д.

¨ Сеть – это отношение общего вида, которое можно трактовать как обобщение – E Í VÈV2È...Vk, а можно – как отношение (E Í Vk) с множеством элементов V, имеющим «пустой» (фиктивный) элемент.

Эти понятия, конечно, широко используются при разработке моделей задач предметных областей. Но также как и в случае множеств по ряду причин прагматического характера в программировании такое АТД общего (универсального) вида представляет ограниченный интерес. Точнее, разнообразные виды представления деревьев, графов и сетей, конечно, широко используются в практике программирования. Но совмещение их с универсальным набором операций и оформление такого универсального АТД представляется полезным только в простых ситуациях.

Фундаментальная роль деревьев и графов проявляется скорее в контексте прикладной задачи при выборе структур данных для эффективной реализации выбранных АТД и алгоритма решения задачи в целом. Но в таком контексте и их способ представления, и набор операций с этими деревьями, графами и сетями, естественно специализирован в соответствии с конкретным контекстом.


Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...