Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Результат работы программы

Филиал «Взлет».

Курсовая работа

По Теории вероятности и математической статистике

Выполнил: студент группы

Р 2/1 Костенко В.В.

 

Проверил: Егорова Т.П.

 

 

Г.Ахтубинск 2004 г.


Содержание

Задание №1: Проверка теоремы Бернулли на примере моделирования электрической схемы. Распределение дискретной случайной величины по геометрическому закону распределения

Задание №2: Смоделируем случайную величину, имеющую геометрический закон распределения случайной величины

Задание №3: Проверка критерием Колмогорова: имеет ли данный массив соответствующий закон распределения

Список используемой литературы

 


Задание №1. Проверка теоремы Бернулли на примере моделирования электрической схемы

Определение: При неограниченном увеличении числа опытов n частота события A сходится по вероятности к его вероятности p.

План проверки: Составить электрическую схему из последовательно и параллельно соединенных 5 элементов, рассчитать надежность схемы, если надежность каждого элемента: 0.6 < pi < 0.9. Расчет надежности схемы провести двумя способами. Составить программу в среде Turbo Pascal.

Схема:

Электрическая цепь, используемая для проверки теоремы Бернулли:

 

Расчет:

Чтобы доказать выполнимость теоремы Бернулли, необходимо чтобы значение частоты появления события в серии опытов в математическом моделировании равнялось значению вероятности работы цепи при теоретическом расчёте этой вероятности.

Математическое моделирование в среде Turbo Pascal

 

Program KURSOVIK;

Uses CRT;

Const c=5;

Var op,i,j,n,m:integer;

a,rab,pp,ppp,ppp1,ppp2:real;

p:array[1..c] of real;

x:array[1..c] of byte;

Begin

ClrScr;

Randomize;

p[1]:=0.7; p[2]:=0.8; p[3]:=0.9; p[4]:=0.7; p[5]:=0.8;

Writeln(' Опытов: Исходы: Вероятность:'); Writeln;

For op:=1 to 20 do Begin

n:=op*100;m:=0;

Write(' n=',n:4);

For i:=1 to n do Begin

For j:=1 to c do Begin

x[j]:=0;

a:=random;

if a<p[j] then x[j]:=1;

End;

rab:=x[i]+x[2]*(x[3]+x[4]+x[5]);

If rab>0 then m:=m+1;

End;

pp:=m/n;

writeln(' M= ',m:4,' P*= ',pp:3:3);

End;

ppp1:=p[1]+p[2]*(p[3]+p[4]+p[5]-p[3]*p[4]-p[3]*p[5]-p[4]*p[5]+p[3]*p[4]*p[5]);

ppp2:=p[1]*p[2]*(p[3]+p[4]+p[5]-p[3]*p[4]-p[3]*p[5]-p[4]*p[5]+p[3]*p[4]*p[5]);

ppp:=ppp1-ppp2;

Writeln; Writeln(' Вер. в опыте: p=',ppp:6:3);

Readln;

End.


Результат работы программы

 

Опытов: Исходы: Вероятность:

n= 100 M= 94    P*= 0.940

n= 200 M= 163  P*= 0.815

n= 300 M= 247  P*= 0.823

n= 400 M= 337  P*= 0.843

n= 500 M= 411  P*= 0.822

n= 600 M= 518  P*= 0.863

n= 700 M= 591  P*= 0.844

n= 800 M= 695  P*= 0.869

n= 900 M= 801  P*= 0.890

n=1000 M= 908   P*= 0.908

n=1100 M= 990 Р*= 0.900

n=1200 M= 1102 P*= 0.918

n=1300 M= 1196 P*= 0.920

n=1400 M= 1303 P*= 0.931

n=1500 M= 1399 P*= 0.933

n=1600 M= 1487 P*= 0.929

n=1700 M= 1576 P*= 0.927

n=1800 M= 1691 P*= 0.939

n=1900 M= 1782 P*= 0.938

n=2000 M= 1877 P*= 0.939

 

Вероятность в опыте: p= 0.939

 


Теоретический расчёт вероятности работы цепи:

I способ:

 

II способ:

 

Вывод: Из математического моделирования с помощью Turbo Pascal видно, что частота появления события в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события P(A) = 0.939.

 

Распределение дискретной случайной величины по геометрическому закону распределения

 

Моделирование случайной величины, имеющей геометрический закон распределения:

 

(X=xk) = p(1-p)k

 

где xk = k=0,1,2…, р – определяющий параметр, 0<p<1. Этот закон является дискретным. Составим теоретический ряд распределения, присваивая р=0,4 и k=0,1,2… и считая Р(Х=xk) получим теоретический многоугольник распределения, изображённый на рис.1.

По ряду распределения составим теоретическую функцию распределения F(x), изображённую на рис.2. Смоделируем дискретную случайную величину, имеющую геометрический закон распределения, методом Монте – Карло. Для этого надо:

1. Разбить интервал (0;1) оси ОК на k частичных интервалов:

 

D1 – (0;р1), D2 – (р112) … Dk – (p1+p2+…+pk-1;1)

 

2. Разбросать по этим интервалам случайные числа rj из массива, смоделированного датчиком случайных чисел в интервале (0;1). Если rj попало в частичный интервал D I, то разыгрываемая случайная величина приняла возможное значение xi.

По данным разыгрывания составим статистический ряд распределения Р*(Х) и построим многоугольник распределения, изображенный на рис.1. Построим статистическую функцию распределения F*(X), изображённую на рис.2. Теперь посчитаем теоретические и статистические характеристики дискретной случайной величины, имеющей геометрический закон распределения.

 


Рис.1.

 

Рис.2.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...