Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, коэффициент теплопроводности (удельная теплопроводность), — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где — полная мощность тепловых потерь, — площадь сечения параллелепипеда, — перепад температур граней, — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Согласно гипотезе Фурье, количество теплоты d2Qτ, проходящее через элемент изотермической поверхности dF за промежуток времени dτ, пропорционально температурному градиенту :

. (9.4)


Здесь множитель λ называется коэффициентом теплопроводности. Знак минус указывает на то, что теплота передается в направлении уменьшения температуры. Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется плотностью теплового потока:

. (9.5)


Проекции вектора q на координатные оси соответственно:

; ; .  


Уравнения (9.4) и (9.5) являются математическим выражением основного закона теплопроводности — закона Фурье.

 

Граничные условия в свою очередь бывают трех родов:

1) первого рода, задается распределение температуры на поверхности тела в функции времени;

2) второго рода, задается плотность теплового потока для всей поверхности тела в функции времени;

3) третьего рода, задаются температура окружающей среды tж и закон теплоотдачи между поверхностью тела и окружающей средой — закон Ньютона—Рихмана:

, (9.13)


где tc — температура поверхности тела; α — коэффициент пропорциональности, называемый коэффициентом теплоотдачи, Вт/(м2·К). Коэф­фициент теплоотдачи численно равен количеству теплоты, отдаваемому или воспринимаемому единицей поверхности в единицу времени при разности температур между поверхностью тела и окружающей средой в один градус. Этот коэффициент учитывает все особенности явлении теплообмена, происходящие между поверхностью тела и окружающей средой. Плотность теплового потока, передаваемого от поверхности тела в окружающую среду,

 

9.4.3.Теплопроводность через плоскую стенку при граничных условиях первого рода

Рис. 9.2. Однородная плоская стенка

Рассмотрим однородную плоскую стенку толщиной δ (рис. 9.2). На наружных поверхностях стенки поддерживаются постоянные температуры tс1 и tс2. Коэффициент теплопроводности стенки постоянен и равен λ. При стационарном режиме () и отсутствии внутренних источников теплоты (qv =0) дифференциальное уравнение теплопроводности примет вид:

. (9.16)

 


При заданных условиях температура будет изменяться только в направлении, перпендикулярном плоскости стенки (ось Оx). В этом случае

,  

 


и дифференциальное уравнение теплопроводности перепишется в виде:

. (9.17)


Граничные условия первого рода запишутся следующим образом: при x=0 t=tc1; при x=δ t=tc2. Интегрируя уравнение (9.17), находим

.  


После второго интегрирования получаем

. (9.18)


Постоянные С1 и С2 определим из граничных условий: при x=0 t=tc1, С2=tc1; при x=δ t=tc21·δ+tc1, отсюда . Подставляя значения С1 и С2 в уравнение (9.18), получим уравнение распределения температуры по толщине стенки:

. (9.19)


Для определения плотности теплового потока, проходящего через стенку в направлении оси Оx, воспользуемся законом Фурье, согласно которому .

Учитывая, что , получим

. (9.20)


Общее количество теплоты, которое передается через поверхность стенки F за время τ,

. (9.21)


Отношение называют тепловой проводимостью стенки, обратную ей величину - термическим сопротивлением теплопроводности. Поскольку величина λ зависит от температуры, в уравнения (9.20), (9.21) необходимо подставить коэффициент теплопроводности λс, взятый при средней температуре стенки.

 

 

Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:

где - степень черноты (для всех веществ , для абсолютно черного тела ). При помощи закона Планка для излучения, постоянную можно определить как

где — постоянная Планка, — постоянная Больцмана, — скорость света.

Численное значение Дж·с−1·м−2 · К−4.

Закон Нью́тона — Ри́хмана — эмпирическая закономерность, выражающая тепловой поток между разными телами через температурный напор.

Теплоотдача — это процесс теплообмена между теплоносителем и твёрдым телом.

Теплопередача — это процесс передачи тепла от одной среды к другой через разделяющую их стенку. Закон утверждает, что

Плотность теплового потока (выражается в Вт/м²) на границе тел пропорциональна их разности температур (так называемый температурный напор):

 

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

где uν — плотность энергии излучения,

ν — частота излучения,

T — температура излучающего тела,

f — функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот.

 

Для нечёрных тел можно приближённо записать:

где — степень черноты (для всех веществ , для абсолютно чёрного тела ).

Константу Стефана — Больцмана можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка.

 

 

Закон излучения Кирхгофа — физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела.

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функция совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом Стефана — Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

 

 

В действительных условиях работы различных теплообменных устройств теплота передается одновременно теплопроводностью, конвекцией и излучением. Такое явление называется сложным теплообменом.

 

Теплообменными аппаратами называются устройства, предназначенные для передачи теплоты от одного теплоносителя к другому. В зависимости от способа передачи теплоты они бывают контактными и поверхностными.

Рис. 12.2. Схема регенератора с неподвижной насадкой

В контактных (смесительных) аппаратах теплообмен осуществляется путем непосредственного соприкосновения и смешения горячей и холодной жидкости. Эти аппараты применяются главным образом для охлаждения и нагревания газов водой или охлаждения воды воздухом. В них теплообмен сопровождается массообменном. Одним из основных параметров, определяющих интенсивность процесса в смесительных аппаратах, является величина поверхности соприкосновения теплоносителей. Для увеличения этой поверхности поступающая в аппарат жидкость распыляется на мелкие капли с помощью специальных форсунок. К смесительным аппаратам относятся скрубберы, градирни, струйные теплообменники.

Поверхностные теплообменные аппараты разделяются на регенеративные и рекуперативные. В регенеративных - теплота горячих газов сначала аккумулируется в теплоемкой насадке (кирпичах, керамической сыпучей массе, металлических листах, шарах). Затем передается нагреваемому газу (воздуху) путем его продувания через горячую насадку. Схема регенератора с неподвижной насадкой приведена на рис. 12.2. Непрерывный процесс теплопередачи между теплоносителями по этой схеме осуществляется с помощью двух регенераторов: когда в одном из них происходит охлаждение горячего теплоносителя, в другом нагревается холодный теплоноситель. Затем аппараты переключаются с помощью клапанов 1 и 2, после чего в каждом из них процесс теплопередачи протекает в обратном направлении.

В рекуперативных аппаратах теплота от горячего теплоносителя передается холодному через разделяющую стенку. К таким аппаратам относятся паровые котлы, подогреватели, конденсаторы.

Схема простейшего кожухотрубного рекуперативного теплообменника приведена на рис. 12.3. Кожухотрубные теплообменники состоят из пучка труб 3, концы которых закреплены в специальных трубных решетках 2. Пучок труб расположен внутри общего кожуха 1, причем один из теплоносителей A движется по трубам, а другой B — в пространстве между кожухом и трубами (межтрубном пространстве). Движение жидкости в теплообменных аппаратах осуществляется по трем основным схемам: прямотока, противотока и перекрестного тока. В схеме прямотока горячая и холодная жидкость движутся параллельно в одном направлении, а в схеме противотока — в противоположных направлениях. В схеме перекрестного тока движение одного теплоносителя перпендикулярно движению другого. На практике встречаются более сложные схемы, включающие различные комбинации основных схем.

 

Рис. 12.3. Схема кожухотрубного рекуперативного теплообменника

 

12.5.Конструкторский и поверочный расчёт теплообменных аппаратов

Тепловой расчет теплообменного аппарата может быть проектным, целью которого является определение поверхности теплообмена, и поверочным, в результате которого при известной поверхности нагрева определяются количество передаваемой теплоты и конечные температуры теплоносителей. В обоих случаях основными расчетными уравнениями являются:

уравнение теплопередачи

(12.11)

 

уравнение теплового баланса, которое при условии отсутствия тепловых потерь имеет вид:

(12.12)

 

где G — массовый расход теплоносителя, кг/с; i — удельная энтальпия, Дж/кг. Здесь и далее индексы 1, 2 относятся соответственно к горячей и холодной жидкостям, индексы ', " — к параметрам жидкости на входе в аппарат и на выходе из него. Полагая, что cр=const, уравнение теплового баланса можно записать так:

(12.13)

Величина G·ср представляет собой полную теплоемкость массового расхода теплоносителя в единицу времени и называется расходной теплоемкостью, или водяным эквивалентом. Из уравнения (12.13) следует:

(12.14)


то есть в теплообменных аппаратах температуры горячей и холодной жидкостей изменяются пропорционально их расходным теплоемкостям. В общем случае температуры жидкостей внутри теплообменника не остаются постоянными. Поэтому уравнение теплопередачи (12.11) справедливо лишь для элемента поверхности теплообмена dF, то есть

 


Общий тепловой поток через поверхность теплообмена F определяется как интеграл

 


Коэффициент теплопередачи k в большинстве случаев изменяется вдоль поверхности теплообмена незначительно, и его можно принять постоянным. Тогда

(12.15)


где Δt — среднее значение температурного напора по всей поверхности нагрева.

Рис. 12.4. Характер изменения температур рабочих тел при прямотоке

Для некоторых простых схем теплообменных аппаратов величина среднего температурного напора может быть определена аналитическим путем. Рассмотрим теплообменный аппарат, работающий по схеме прямотока (рис. 12.4). Тепловой поток, передаваемый через элемент поверхности dF, определится уравнением теплопередачи

(12.16)

 

При этом температура горячей жидкости понизится на dtж1, а холодной - повысится на dtж2. Следовательно

(12.17)

 

Отсюда

(12.18)

 

Изменение температурного напора при этом определится уравнением

(12.19)

 

где .

Подставив в уравнение (12.19) значение dQ из (12.16), получаем

(12.20)


Обозначив tж1—tж2=Δti, перепишем (12.20) в виде:

(12.21)


Интегрируя при постоянных m и k, получаем или

(12.22)


где Δt’=t’ж1—t’ж2 и Δt”=t”ж1—t”ж2 температурные напоры на входе и выходе из аппарата.

Перепишем уравнение (12.22) в виде:

. (12.23)


Из (12.13) и (12.14) найдём

и .  


Подставим найденные значения C1 и C2 в (12.23) и получим:

 


 


Тогда

(12.24)


Однако Q=k·F·Δt. Поэтому

(12.25)


Полученное значение температурного напора называется среднелогарифмическим. Точно также выводится формула для среднего температурного напора аппарата с противотоком (рис. 12.5).

Рис. 12.5. Характер изменения температур рабочих тел при противотоке

Зная величины Δt, Q и k, можно вычислить поверхность теплообмена:

. (12.26)

 

Сравнение средних температурных напоров показывает, что при одинаковых температурах теплоносителей на входе и выходе из аппарата наибольший температурный напор получается в теплообменнике с противотоком, наименьший — с прямотоком. Благодаря большей величине среднего температурного напора рабочая поверхность теплообменника с противотоком оказывается меньшей, чем с прямотоком. Следует отметить, что в тех случаях, когда расходная теплоемкость одного из теплоносителей значительно отличается от другого, или когда средний температурный напор значительно превышает изменение температуры одного из теплоносителей, обе схемы будут равноценны.

При поверочном расчете теплообменников поверхность теплообмена задана.

Известны также начальные температуры жидкостей и их расходные теплоемкости. Искомыми являются конечные температуры и передаваемый тепловой поток. В приближенных расчетах принимают, что температуры рабочих жидкостей изменяются по линейному закону. В точных расчётах используют метод последовательных приближений.Сущность этого метода заключается в следующем. Задаются температурой t”ж1 горячей жидкости на выходе из теплообменного аппарата и из (12.13) находят передаваемый тепловой поток и температуру t”ж2 холодной жидкости на выходе из теплообменного аппарата.

(12.27)


Затем определяют значение Q из (12.24). Если значение Q, определённое из (12.24), оказывается большим его же значения, рассчитанного с помощью выражения (12.13), значение t”ж1 уменьшают и повторяют расчёт. В противном случае t”ж1 увеличивают и снова повторяют расчёт. Эту процедуру продолжают до тех пор, пока последующее значение Q не будет отличаться от предыдущего на некоторую заранее заданную величину. Например, на величину, не превышающую одного процента предыдущего значения Q.

Конве́кция (от лат. convectiō — «перенесение») — вид теплопередачи, при котором внутренняя энергия передается струями и потоками. Существует т. н. естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной. Естественная- нагревание жидкости,воздуха в комнате

Вынужденная- перемешивание жидкости (мешалкой, ложкой, насосом и т.д.)

ЛУЧИСТЫЙ ТЕПЛООБМЕН (радиационный теплообмен) - процесс переноса энергии, обусловленный превращением части внутр. энергии вещества в энергию излучения (испусканием эл--магн. волн, или фотонов), переносом излучения в пространстве со скоростью света и его поглощением веществом (обратным превращением энергии эл--магн. волн во внутр. энергию). При этом перенос излучения в материальной среде может сопровождаться поглощением и рассеянием, а также собств. излучением среды. Однако для Л. т. наличие материальной среды между телами не является необходимым, что принципиально отличает Л. т. от др. видов теплообмена (теплопроводности, конвективного теплообмена). Передача теплоты излучением может происходить в разл. областях спектра (в зависимости от темп-ры).

Испускание лучистой энергии (тепловое излучение) абсолютно чёрного тела описывается Стефана - Больцмана законом излучения и Планка законом излучения.

 

Закон Стефана — Больцмана. Плотность потока собственного интегрального излучения абсолютно черного тела можно найти на осно­вании закона Планка как суммарную энергию излучения тела по всем длинам волн

. (11.13)


В результате интегрирования найдём

, (11.14)


где с0 =5,67 Вт/(м2·К4) — коэффициент излучения абсолютно черного тела. Индекс «О» указывает на то, что рассматривается излучение абсолютно черного тела.

 

 

Всякая химическая реакция сопровождается выделением или поглощением тепла и соответственно называется экзотермической или эндотермической. Химические реакции, протекающие в процессах горения, преимущественно сильно экзотермические, некоторые реакции, как, например, реакции восстановления углекислоты, являются эндотермическими.

Количество тепла, выделяющегося при полном сгорании единицы массы данного топлива зависит от того, в паровом или жидком состоянии находится влага в продуктах сгорания. Если водяной пар сконденсируется и вода в продуктах сгорания будет находиться в жидком виде, то тепло парообразования освободится и тогда количество тепла, выделяющегося при сгорании единицы массы топлива, получается больше.

Количество тепла, выделяющегося при полном сгорании 1 кг твердого или жидкого топлива или 1 м3 газового топлива, при условии, что образующиеся водяные пары в продуктах сгорания конденсируются, называется высшей теплотой сгорания топлива.

В условиях температур и парциального давления Н20 на всем протяжении газового тракта парогенератора водяные пары, содержащиеся в продуктах сгорания, не конденсируются и вместе с ними отводятся в атмосферу. Следовательно, некоторая часть тепла, выделившегося при сгорании затрачивается на образование водяного пара и не может быть использована в парогенераторе. Поэтому теплота сгорания получается меньше освобождающейся при горении химической энергии топлива.

Количество тепла, которое выделяется при полном сгорании 1 кг твердого или жидкого или 1 м3 газового топлива, за вычетом тепла парообразования водяных паров, образующихся при горении, называется низшей теплотой сгорания.

Теплосиловая установка - Установка, предназначенная для преобразования тепла в механическую или электрическую энергию с использованием прямого термодинамического цикла.

 

Парогазовая установка — электрогенерирующая станция, служащая для производства электроэнергии. Отличается от паросиловых и газотурбинных установок повышенным КПД Парогазовая установка содержит два отдельных двигателя: паросиловой и газотурбинный. В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтяной промышленности (дизельное топливо). На одном валу с турбиной находится генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают лишь часть своей энергии и на выходе из неё, когда их давление уже близко к наружному и работа не может быть ими совершена, все ещё имеют высокую температуру. С выхода газовой турбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 °C позволяет получать перегретый пар при давлении около 100 атмосфер). Паровая турбина приводит в действие второй электрогенератор. Широко распространены парогазовые установки, у которых паровая и газовая турбины находятся на одном валу, в этом случае используется только один, чаще всего двухприводный генератор. Такая установка может работать как в комбинированном, так и в простом газовом цикле с остановленной паровой турбиной. Также часто пар с двух блоков ГТУ—котёл-утилизатор направляется в одну общую паросиловую установку.

Иногда парогазовые установки создают на базе существующих старых паросиловых установок. В этом случае уходящие газы из новой газовой турбины сбрасываются в существующий паровой котел, который соответствующим образом модернизируется. КПД таких установок, как правило, ниже, чем у новых парогазовых установок, спроектированных и построенных «с нуля».

 

 

 

^ 3.7 Теплоотдача при изменении агрегатного состояния

Среды


Часто в процессе теплообмена нагреваемые или охлаждаемые материалы изменяют агрегатное состояние: испаряются, конденсируются, плавятся или кристаллизуются. Особенности таких процессов теплообмена заключаются в том, что тепло подводится к материалам или отводится от них при постоянной температуре и распространяется не в одной, а в двух фазах. Эти особенности теплоотдачи при изменении агрегатного состояния могут быть учтены путем введения в уравнения подобия конвективного переноса тепла дополнительного числа подобия, учитывающего теплоту изменения агрегатного состояния.

. (3.45)


Величина ^ К является числом теплового подобия при изменении агрегатного состояния. Величина Δt представляет собой разность между температурой фазового превращения и температурой одной из фаз, а произведение cΔt является теплотой перегрева или переохлаждения рассматриваемой зоны относительно температуры фазового превращения. Число К является мерой отношения тепла, идущего на изменение агрегатного состояния вещества, к теплоте перегрева или переохлаждения одной из фаз относительно температуры фазового превращения. Число К характеризует относительное изменение количества протекающей жидкости вследствие изменения агрегатного состояния на границе раздела фаз.

Из различных случаев теплоотдачи при изменении агрегатного состояния наибольшее значение для процессов химической технологии имеют теплоотдача при конденсации паров и теплоотдача при кипении жидкостей.

3.7.1 Теплоотдача при конденсации пара

Конденсация пара применяется для обогрева различных технологических аппаратов. Широкое применение пара определяется следующими достоинствами:

1) постоянной температурой обогрева (tконд);

2) простотой, точностью регулирования температуры обогрева (изменением давления);

3) высокой интенсивностью теплообмена (αп= 10000…15000 Вт/(м2 град);

4) большим количеством тепла, выделяемого при конденсации 1 кг пара;

5) тем, что водяной пар дешевый, доступный, негорючий, нетоксичный, невзрывоопасный, транспортабельный.

П

а б

Рисунок 3.6 – Пленочная (а) и капельная (б) конденсация пара
ар конденсируется, т.е. переходит в жидкое состояние, на поверхности теплообмена, температура которой ниже температуры насыщения (tc<tn). Различают капельную конденсацию, когда образовавшаяся жидкость (конденсат) не смачивает поверхность и скатывается в виде отдельных капель, например, ртуть на стальной стенке, и пленочную конденсацию, когда конденсат смачивает поверхность и образует сплошную пленку (рисунок 3.6). Пленка жидкости, образующаяся на поверхности твердого тела, представляет собой основное термическое сопротивление распространению тепла от пара к твердому телу, однако пленочная конденсация встречается значительно чаще.

Аналитическое решение для расчета локального коэффициента теплоотдачи при ламинарном течении пленки (Re<400) имеет вид:

, (3.46)


где r – теплота парообразования;

х – степень сухости пара.

Из формулы (3.46) видно, что интенсивность теплоотдачи убывает по мере стекания конденсата из-за возрастания толщины его пленки. Среднее значение коэффициента теплоотдачи от поверхности высотой Н

. (3.47)


Теплофизические параметры конденсата в формулы (3.46), (3.47) следует подставлять при температуре насыщения tn, а λc и µc при температуре стенки.

Вдоль поверхности, наклоненной под углом φ к вертикали, конденсат стекает медленнее, пленка его получается толще, коэффициент теплоотдачи ниже. Формула для расчета среднего коэффициента теплоотдачи для горизонтальной трубы:

, (3.48)


где – экспериментальная поправка.

В промышленных теплообменниках конденсация обычно происходит на поверхности пучков труб. Коэффициент теплоотдачи от пучка труб ниже, чем от одиночной трубы, поскольку толщина пленки конденсата на нижних трубах увеличивается за счет стекания его с верхних труб. Формулы и графики для расчета поправок можно найти в справочниках.

Присутствие в паре неконденсирующихся газов (например, воздуха) сильно снижает значение коэффициента теплоотдачи из-за того, что пар, подходя к поверхности, на которой идет конденсация, увлекает вместе с собой и неконденсирующиеся газы. При конденсации происходит как бы сортировка перемещенных молекул пара и газа – первые захватываются пленкой конденсата, а вторые остаются в газовой фазе, накапливаются и вынуждены двигаться назад от поверхности раздела фаз. Этот встречный поток затрудняет доступ новым молекулам пара к пленке конденсата, т.е. замедляет процесс конденсации. Влияние неконденсирующихся газов на теплоотдачу при конденсации уменьшается в случае, когда поверхность обдувается потоком пара со скоростью wn, поскольку при этом молекулы газа сносятся набегающим потоком и не успевают накапливаться около пленки конденсата.

Коэффициент теплоотдачи увеличивается со скоростью движения пара, если поток его уменьшает толщину пленки конденсата или срывает ее. Если же поток пара препятствует движению пленки и при этом не срывает ее, то увеличение скорости пара приводит к уменьшению коэффициента теплоотдачи.

При шероховатых поверхностях коэффициенты теплоотдачи меньше, чем при гладких, так как их сопротивление течению жидкой пленки больше, и поэтому меньше скорость стекания пленки и больше ее толщина.

3.7.2 Теплоотдача при кипении жидкости

Этот вид теплоотдачи отличается высокой интенсивностью и встречается в химической технологии, например при проведении таких процессов, как выпаривание, перегонка жидкостей, в испарителях холодильных установок.

Кипение – это испарение в объем жидкости с образованием паровоздушных пузырьков. В процессе кипения жидкость обычно сохраняет постоянную температуру, равную температуре насыщения tН. Поверхность, к которой подводится тепловой поток, перегрета сверх значения tН на величину Δt. При малых значениях Δt теплота переносится в основном путем естественной конвекции, коэффициенты теплоотдачи можно рассчитать по формуле:

, (3.49)


где В и n – справочные коэффициенты.

1 – пузырьковый режим кипения; 2 – пленочный режим кипения Рисунок 3.7 – Зависимость коэффициента теплоотдачи α от перегрева стенки При увеличении перегрева поверхности на ней образуется все большее число паровых пузырей, которые при отрыве и подъеме интенсивно перемешивают жидкость. Вначале это приводит к резкому увеличению коэффициента теплоотдачи (пузырьковый режим кипения), но затем парообразование у поверхности становится столь интенсивным, что жидкость отделяется от греющей поверхности почти сплошной прослойкой (пленкой) пара (рисунок 3.7).


Наступает пленочный режим кипения. Естественно, что пленка пара неустойчива и непрерывно разрушается, но тут же восстанавливается за счет новых порций образующегося пара. Пар, как и любое газообразное вещество, плохо проводит теплоту, и даже тонкая пленка, имея большое термическое сопротивлен

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...