Испарительные барьеры (F).
Глеевые барьеры (С). Эти барьеры в наиболее типичных случаях возникают на участках резкой смены кислородной обстановки глеевой. Реже – слабоглеевой обстановки резкоглеевой, то есть тоже глеевой, но характеризующейся ещё более низкими значениями окислительно-восстановительного потенциала. Теоретически можно предположить вероятность существования в природе глеевых барьеров типов С9-С12, которые возникали бы при поступлении сероводородных вод в глеевую среду. Но такие барьеры пока не изучены. Глеевые барьеры очень широко распространены в гумидных и семиаридных ландшафтах, особенно в супераквальных (с неглубоким залеганием грунтовых вод), где развиваются процессы заболачивания. При заболачивании формируется глеевая среда. В результате нисходящего движения почвенных вод или латерального стока грунтовых вод из сопряжённых возвышенных ландшафтов по периферии зоны заболачивания формируются глеевые барьеры типа С2 или С3. Возможно также возникновение глеевых барьеров в краевых частях артезианских бассейнов. Воды внутренних частей этих бассейнов залегают между водоупорными горизонтами, которые также изолируют водоносный горизонт от проникновения атмосферного кислорода. Те же воды, которые поступают в артезианский бассейн из области питания, по мере своего продвижения могут терять кислород, расходуя его на окисление содержащегося в водоносном горизонте органического вещества. В результате во внутренних частях артезианского бассейна формируется бескислородная среда. Если при этом в водах содержится мало сульфат-иона, они будут глеевыми. На границе кислородных вод, поступающих из области питания, и глеевых вод внутренней части артезианского бассейна, будет формироваться подвижный глеевый барьер.
Щелочные барьеры (D). Возникают на участках резкого повышения рН среды в нейтральной, кислой и щелочной обстановках. В соответствии с общими законами миграции на них происходит накопление преимущественно катионогенных химических элементов, лучше мигрирующих в кислой среде: Fe, Mn, Ni, Co, Cu, в том числе такие высоко токсичные загрязнители природной среды, как Pb, Cd, Hg, As, U и др. Характерный пример: почвенный профиль элювиального ландшафта влажных тропиков на карбонатных породах. Сверху формируются кислые почвы, повышенная кислотность которых обеспечивается разложением больших объёмов органических остатков. Растворы, фильтрующиеся через эти почвы, попадают в карбонатные горные породы, трещинные воды которых имеют щелочную реакцию. Возникает щелочной барьер типа D2. Способность многих токсичных элементов осаждаться на щелочных барьерах используют для локализации загрязнения, создавая такие барьеры искусственно. Например, для обработки виноградников широко используется в качестве фунгицида смесь медного купороса CuSO4 и гашеной Ca(OH)2 извести (бордосская смесь). В результате при многолетнем применении этого средства в почве накапливается избыток меди, достигающий опасного уровня – особенно в почвах подчинённых ландшафтов, куда мигрируют почвенные растворы. Для борьбы с загрязнением на путях миграции растворов роют траншеи, которые заполняют песчано-карбонатной смесью, в которых возникает щелочная среда. Формируется щелочной барьер, на котором медь связывается в форме малоподвижного в этих условиях гидрокарбонатного соединения малахита – Cu2CO3(OH)2.
Сорбционные барьеры (G). Сорбцией называется способность тел поглощать из окружающей среды растворённые вещества или газы. В том числе такой способностью обладают присутствующие в водной среде мелкие взвешенные частицы, в том числе и мицеллы коллоидов. Сорбированные ионы могут либо выводиться из водной среды в результате выпадения частиц в осадок (в частности, при коагуляции коллоидов), либо мигрировать дальше, пассивно переносясь сорбировавшими их частицами.
Сорбционные барьеры возникают в результате резкого снижения миграционной способности химических элементов при фильтрации ионных водных растворов или газовых смесей через среды, обладающие повышенной сорбционной способностью. Эти барьеры особенно важны для элементов с низкими кларками, так как осаждение в процессе сорбции может происходить при очень низких концентрациях, намного меньших, чем концентрации насыщения. Таким образом, роль сорбции в миграционных процессах может быть двоякой, в зависимости от конкретных условий: сорбция может быть причиной осаждения вещества из раствора; сорбция может способствовать пассивной миграции вещества при механическом переносе частиц-сорбентов. Различаются два вида процессов сорбирования: адсорбция и абсорбция. В первом случае сорбируемое вещество поглощается только поверхностью тела, во втором – всем его объёмом. Адсорбция может иметь разную природу. Химическая адсорбция основана на установлении прочных химических связей адсорбента с поглощающим веществом и практически необратима. Физическая адсорбция происходит на основе слабых межмолекулярных связей (ван-дер-вальсовых) и является обратимой. Следовательно, возможны процессы не только сорбции, но и десорбции, то есть перехода сорбированных частиц обратно в раствор. Поэтому при таком типе сорбции адсорбированное вещество находится в состоянии подвижного равновесия с неадсорбированной (остающейся в растворе) частью того же вещества. Интенсивность адсорбции возрастает с уменьшением размеров частиц адсорбента и, следовательно. С возрастанием общей поверхности. Адсорбции способствует образование плохо растворимого соединения адсорбата и адсорбента (например, адсорбция фосфат-ионов гидроокисью трехвалентного железа).Величина адсорбции увеличивается при возрастании концентрации вещества и снижении температуры раствора. Снижение концентрации вещества в растворе и повышение его температуры, напротив, усиливают процессы десорбции. В целом, вещества адсорбируются тем лучше, чем ниже их растворимость (правило П.А. Ребиндера). Поэтому любой внешний фактор, снижающий растворимость, усиливает сорбцию, и напротив – любое изменение условий, приводящее к увеличению растворимости вещества, будет усиливать десорбцию. Важный фактор, влияющий на активность сорбционных процессов – изменение валентности ионов, то есть процессы окисления и восстановления. Многозарядные ионы адсорбируются легче, чем ионы низкой валентности. Например, хорошо растворимый в своей шестивалентной форме уран, попадая в богатые органическим веществом илы, оказывается в восстановительной среде и восстанавливается до четырёхвалентного. В результате растворимость его резко снижается, он сорбируется этими илами и накапливается в них.
Особой разновидностью сорбционных процессов является процесс обменной сорбции – когда адсорбент, поглощая какие-либо ионы из окружающего раствора, отдаёт эквивалентное количество ранее сорбированных им ионов другого вещества. Процессы обменной сорбции широко развиты в почвах (при этом участие в них обычно принимают только катионы). Совокупность присутствующих в почве веществ, способных к обменной сорбции, называется почвенным поглощающим комплексом (ППК). Он в основном состоит из гумусового вещества и глинистых минералов. Наиболее распространённые сорбенты в зоне гипергенеза: глины и глинистые минералы;гумус;рассеянное органическое вещество;битумы;торф;бурые угли; гидрооксиды Fe, Al, Mn; гели кремнезёма;мицеллы коллоидов;частицы аэрозолей. Классическим примером сорбционного барьера являются краевые части болот (где этот барьер обычно совмещается с глеевым, иногда также с кислым). Торф и богатые гумусовым веществом болотные почвы активно сорбируют металлы – U, Be, Ge, Mo, Pb, Zn и др. Концентрации урана в торфяниках могут превосходить концентрацию в питающих водах в 10 000 раз. Таким путём могут формироваться промышленные месторождения урана.
В нефтегазоносных областях сорбционные барьеры возникают в результате процессов окисления нефтей и превращения их в полужидкие и твёрдые битумы. Здесь сорбционный барьер нередко совмещается с сероводородным. Дело в том, что в этом процессе окисление нефтей сопровождается восстановлением сульфатной серы в результате деятельности бактерий. Здесь концентрируются U, V, Ni, Co, Mo, Cu, Zn и другие металлы. Очень высокой сорбционной способностью обладает гумусовое вещество почв, особенно чернозёмных и каштановых. Поэтому почвенный поглощающий комплекс тоже может выступать в роли сажного геохимического барьера. На этом барьере идёт активное поглощение катионов металлов (Ca, K, Pb, Zn, Cd, Hg и др.), а также некоторых комплексных анионов (содержащих As, P, Se, Mo, V). Если бы вся потенциальная ёмкость поглощения металлов ППК реализовалась только за счёт поглощения токсичных тяжёлых металлов, то ПДК по Pb, Hg, Cd могли бы быть превышены в почвах в сотни и тысячи раз. На деле этого обычно не происходит потому, что здесь столь же активно поглощаются и вполне «безобидные» Ca, K, Mg. А так как их кларки на несколько порядков выше, то основной объём сорбированного вещества приходится именно на эти элементы. Но в условиях техногенного загрязнения формирование повышенных концентраций токсичных элементов на почвенном сорбционном барьере тоже возможно, хотя и не в столь гигантских масштабах. Очень важную роль в зоне гипергенеза играют два сорбционных макробарьера. Первый – на путях стока речных вод в мировой океан. Здесь идёт массовое осаждение мелких принесённых реками глинистых частиц и мицелл коллоидов. А ведь и те, и другие, обладают высокой сорбционной способностью и связывают большое количество атомов токсичных элементов. Адсорбционные процессы могут приводить к удалению многих ионов из природных вод. Адсорбирующая способность глинистых минералов, особенно монтмориллонита, очень высока. Химическая адсорбция ионов калия монтмориллонитов может приводить к образованию иллита. Многие комплексные ионы, например, содержащие мышьяк и молибден, а также ионы тяжелых металлов, адсорбируются на коллоидных частицах и удаляются из раствора, впоследствии накапливаясь в осадочных железных и марганцевых рудах. Так происходит систематическое обезвреживание гидросферы. Если бы не было этого явления, целый ряд биологически вредных элементов накапливался бы в воде океанов, т.к. значительное количество таких элементов как медь, селен, мышьяк, свинец освобождаются в больших количествах и в процессах выветривания и эрозии и попадает в природные воды. Таким образом, этот барьер выполняет важнейшую геохимическую функцию, способствуя естественному самоочищению водных систем Земли. К сожалению, масштабы техногенного загрязнения в наше время возрастают настолько, что даже ёмкость этого крупнейшего барьера нередко оказывается превышенной, и сама по себе природа с очисткой загрязнённого речного стока не справляется.
Второй подобный макробарьер возникает при воздушной миграции благодаря концентрации сорбируемых компонентов аэрозольными частицами. К сожалению, такой механизм очищения атмосферы является лишь итоговым результатом достаточно продолжительного процесса. А в течение сравнительно небольших промежутков времени действие аэрозольного барьера, напротив, приводит к увеличению масштабов переноса загрязнителей и возникновению их повышенных концентраций в районах размещения промышленных предприятий. Сорбционные барьеры играют важную роль в формировании геохимической специфики различных оболочек нашей планеты. Наиболее наглядно это видно из сравнения геохимии натрия и калия. Два элемента с очень похожими химическими свойствами, одинаковым кларком, одинаково ведущих себя в процессах ионной миграции. Но вот в водах мирового океана содержание натрия намного выше. Почему? Дело в том, что калий очень активно связывается в сорбционных процессах, и потому лишь незначительная его доля поступает с ионным стоком в мировой океан. А натрий, наоборот, в большей своей части выносится именно туда.
Испарительные барьеры (F). Это участки зоны гипергенеза, где накопление химических элементов обусловлено процессами испарения. Первая существенная особенность этих барьеров – действие в условиях самых разнообразных по химизму обстановок. То есть действие испарительного барьера лишь в незначительной степени зависит от параметров кислотности-щёлочности среды или окислительно-восстановительного потенциала. Главным фактором является климат. Вторая важная особенность – то, что именно на этих барьерах концентрируются наиболее растворимые химические элементы. Те, которые подвижны в водах любого химического состава (Na, K, Rb, Cl и др.). Понятно, что самый простой способ осадить такие элементы – это просто выпарить раствор, в котором они переносятся. Условия возникновения испарительного барьера – сухой климат и неглубокое залегание грунтовых вод (нарисовать схему). В такой ситуации водные растворы поднимаются с водоносного горизонта к поверхности. Поднимает их сила поверхностного натяжения в капиллярах. Так как в условиях сухости климата вытянутая по капиллярам вода сразу же испаряется, ей на смену с водоносного горизонта поступают всё новые и новые порции. И этот «вытягивающий» воду механизм действует непрерывно. Постоянно всё новые и новые порции H2O испаряются, а содержавшиеся в них растворённые соли концентрируются в грунтах и почвах. Глубина, с которой возможен капиллярный подъём грунтовых вод к поверхности, зависит от температуры (чем выше Т, тем с больших глубин возможен такой подъём). Другие факторы – размеры пор, минеральный состав грунтов, минерализация растворов. То есть зависимость достаточно сложная. Но в целом обычно испарительная концентрация солей в условиях аридного климата начинает проявляться начиная с глубин 3,5-4 м, и особенно усиливается с глубин 2,5-3 м. Нередко полное испарение воды происходит раньше, чем она достигает поверхности, то есть внутри почвенного профиля. Для испарительных барьеров характерна вертикальная зональность, связанная с тем, что разные соли имеют разную растворимость и, при повышении минерализации раствора, выпадают в осадок поочерёдно. Вначале идёт осаждение и накопление карбонатов Ca и Mg, затем – гипса (сульфат Ca), и наконец – наиболее растворимых соединений (хлоридов Na и K, некоторых сульфатных соединений, реже – нитратов Na и Mg). Аналогичная зональность нередко бывает развёрнута и по латерали, так как минерализация грунтовых вод обычно увеличивается в процессе их стока от области питания (если процессы испарения действуют на значительных интервалах по пути движения грунтовых вод). Так как в типичном случае испарительный барьер возникает при вертикальном движении вод в сторону земной поверхности, он может в природе совмещаться с кислородным и термодинамическим барьерами. С кислородным – так как одновременно может резко увеличиваться окислительно-восстановительный потенциал среды. С термодинамическим – так как выход грунтовых вод на поверхность означает резкое изменение термодинамических параметров, в особенности давления. Испарительные барьеры могут также формироваться по периферии водоёмов (рек, озёр, водохранилищ). Дело в том, что капиллярно-плёночное перемещение может иметь не только вертикальную, но и латеральную (горизонтальную) направленность. Если грунты постоянно «подпитываются» водами поверхностного водоёма, то в условиях засушливого климата тот же механизм капиллярного «вытягивания» может действовать и в латеральном направлении. Это явление нередко приобретает опасный характер в условиях техногенного загрязнения водоёмов в аридных ландшафтах. В.А. Алексеенко описан случай, когда в окрестностях отстойника, куда сбрасывались загрязнённые воды, содержание свинца в почвах окружающих территорий выросло до 1%, а цинка - даже до 10%!. На рудных месторождениях такие содержания уже считались бы промышленными, а здесь они сформировались в почве! Но такие случаи являются относительно редкими. А вот типичный негативный результат действия испарительного барьера заключается в том, что с ним связано развитие процессов засоления почв и, как результат – ухудшение плодородия почв, вплоть до полной непригодности для земледелия. Ежегодно из-за процессов засоления огромные площади земель выходят из сельхозоборота. особенно вредными являются процессы содового засоления, так как кроме увеличения содержания солей в почвах одновременно резко увеличивается и щёлочность среды.
21. Термодинамические барьеры (Н) возникают на участках резкого уменьшения миграционной способности химических элементов в результате изменения на путях движения миграционных потоков температуры или давления (или обоих этих факторов одновременно). В целом они весьма разнообразны по механизму и по направленности действия. Кроме этого, выделяются сульфатный (I) и карбонатный (К) геохимические барьеры. Наиболее типичный пример резкого изменения данных параметров - ситуация в местах выхода подземных вод на земную поверхность. Здесь мы всегда имеем дело с резким снижением давления, и нередко – с повышением температуры. В отношении некоторых веществ действие этих факторов суммируется. В первую очередь это касается веществ, на растворимость которых влияет содержание в водном растворе углекислоты (так называемое косвенное действие термодинамического барьера). Растворимость CO2 резко снижается при увеличении температуры водного раствора, и в этом же направлении действует уменьшение давления. Но изменение содержания CO2 в растворе смещает карбонатное равновесие: растворимая форма Ca(HCO3)2 переходит в труднорастворимую CaCO3. Таков механизм образования известковых отложений в местах выхода на поверхность углекислых источников. Кроме карбоната кальция таким же путём могут выпадать в осадок карбонатные соединения свинца, цинка, стронция. В местах выхода на поверхность глеевых вод идёт активное осаждение соединений железа и марганца. При этом термодинамический барьер совмещается с кислородным, и их действие суммируется. Очень сложный по механизму термодинамический барьер действует в местах сезонного промерзания и оттаивания грунтовых вод. На начальных стадиях замерзания минерализованных вод, когда температура раствора опускаются чуть ниже нуля, многие минеральные вещества выпадают в осадок. В случае многократного промерзания и оттаивания минерализация грунтовых вод может уменьшится на порядок. Это – одна из причин очень низкой минерализации вод в зоне тундры. В.А. Алексеенко выделил различные типы миграции (не путать с видами): Первый тип – изменение формы нахождения элемента без его существенного перемещения. Примеры: переход из минеральной фазы в раствор и обратно, извлечение минеральных веществ из почвы растениями. Геохимическая роль процесса может быть очень значительной, несмотря на то, что перемещение почти отсутствует. Например, избирательное извлечение отдельных элементов из почв и их накопление в растениях и продуктах их разложения. Если поступления этих веществ обратно в почву не происходит, почвы истощаются. Второй тип – перемещение элемента без изменения формы его нахождения. Перемещение обломков, аэрозолей, текучих вод. Третий тип – объединение обоих механизмов. Является преобладающим в гипергенных условиях. Первый и второй типы – крайние случаи, их выделение в «чистом» виде можно считать некоторой условностью, применяемой в тех случаях, когда одна из двух составляющих пренебрежимо мала.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|