Тогда средняя ошибка аппроксимации равна
Стр 1 из 2Следующая ⇒ Таблица 3.1 – Исходные данные
Эмпирические коэффициенты регрессии b0, b1 будем определять с помощью инструмента «Регрессия» надстройки «Анализ данных» табличного процессораMS Excel. Алгоритм определения коэффициентов состоит в следующем. 1. Вводимисходные данные в табличный процессор MS Excel. 2. Вызываемнадстройку Анализ данных(рисунок 2). 3.Выбираем инструмент анализа Регрессия(рисунок 3). 4. Заполняем соответствующие позиции окна Регрессия (рисунок 4). 5. Нажимаем кнопку ОК окна Регрессия и получаем протокол решения задачи (рисунок 5)
Рисунок 2 – Активизация надстройки Анализ данных Рисунок 3 – Выбор инструмента Регрессия
Рисунок 5 – Протокол решения задачи
Из рисунка 5 видно, что эмпирические коэффициенты регрессии соответственно равны b0= 223, b1 = 0, 0088. Тогда уравнение парной линейной регрессии, связывающая величину ежемесячной пенсии у с величиной прожиточного минимумахимеет вид .(3.2) Далее, в соответствии с заданием необходимо оценить тесноту статистической связи между величиной прожиточного минимума х и величиной ежемесячной пенсии у. Эту оценку можно сделать с помощью коэффициента корреляции . Величина этого коэффициента на рисунке 5 обозначена как множественный R и соответственно равна 0,038. Поскольку теоретически величина данного коэффициента находится в пределахот –1 до +1, то можно сделать вывод о не существенности статистической связимежду величиной прожиточного минимума х и величиной ежемесячной пенсии у.
Параметр «R – квадрат», представленныйна рисунке 5 представляет собой квадрат коэффициента корреляции и называется коэффициентом детерминации. Величина данного коэффициента характеризует долю дисперсии зависимой переменной у, объясненную регрессией (объясняющей переменной х). Соответственно величина 1- характеризует долю дисперсии переменной у, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных. Из рисунка 5 видно, что доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет 1- 0,00145 = 0,998 или 99,8%. На следующем этапе, в соответствии с заданием необходимо определить степень связи объясняющей переменной х с зависимой переменной у, используя коэффициент эластичности. Коэффициент эластичности для модели парной линейной регрессии определяется в виде: . (3.3) Тогда Следовательно, при изменении прожиточного минимума на 1% величина ежемесячной пенсии изменяется на 0,000758%. Далее определяем среднюю ошибку аппроксимации по зависимости
. (3.4) Для этого исходную таблицу 1 дополняем двумя колонками, в которых определяем значения, рассчитанные с использованием зависимости (3.2) и значения разности .
Таблица 3.2. Расчет средней ошибки аппроксимации.
Тогда средняя ошибка аппроксимации равна
. Из практики известно, что значение средней ошибки аппроксимации не должно превышать (12…15)% На последнем этапе выполним оценкустатистической надежности моделирования спомощью F – критерия Фишера. Для этого выполним проверку нулевой гипотезы Н0 о статистической не значимости полученного уравнения регрессиипо условию: если при заданном уровне значимости a = 0,05 теоретическое (расчетное) значение F-критерия больше его критического значения Fкрит (табличного), то нулевая гипотеза отвергается, и полученное уравнение регрессии принимается значимым. Из рисунка 5 следует, что Fрасч = 0,0058. Критическое значение F-критерия определяем с помощью использования статистической функции FРАСПОБР (рисунок 6). Входными параметрами функции является уровень значимости (вероятность) и число степеней свободы 1 и 2. Для модели парной регрессии число степеней свободы соответственно равно 1 (одна объясняющая переменная) и n-2 = 6-2=4. Рисунок 6 – Окно статистической функции FРАСПОБР
Из рисунка 6 видно, что критическое значение F-критерия равно 7,71. Так как Fрасч < Fкрит, то нулевая гипотеза не отвергается и полученное регрессионное уравнение статистически незначимо. 13. Построение модели множественной регрессии с использованием EXCEL. В соответствии с вариантом задания, используя статистический материал, необходимо. 1. Построить линейное уравнение множественной регрессии пояснить экономический смысл его параметров. 2. Дать сравнительную оценку тесноты связи факторов с результативным признаком с помощью средних (общих) коэффициентов эластичности. 3. Оценить статистическую значимость коэффициентов регрессии с помощью t-критерия Стьюдента и нулевую гипотезу о значимости уравнения с помощью F-критерия. 4. Оценить качество уравнения посредством определения средней ошибки аппроксимации. Исходные данные для построения модели парной регрессии приведены в таблице 3.3.
Таблица 3.3. Исходные данные.
Технология построения уравнения регрессии аналогична алгоритму, изложенному в пункте 3.1. Протокол построения уравнения регрессии показан на рисунке 7.
Рисунок 7. Вывод итогов.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|