Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тогда средняя ошибка аппроксимации равна




Таблица 3.1 – Исходные данные

Область Средний размер назначенных ежемесячных пенсий, у.д.е., у Прожиточный минимум в среднем на одного пенсионера в месяц, у.д.е., х  
Орловская    
Рязанская    
Смоленская    
Тверская    
Тульская    
Ярославская    

 

Эмпирические коэффициенты регрессии b0, b1 будем определять с помощью инструмента «Регрессия» надстройки «Анализ данных» табличного процессораMS Excel.

Алгоритм определения коэффициентов состоит в следующем.

1. Вводимисходные данные в табличный процессор MS Excel.

2. Вызываемнадстройку Анализ данных(рисунок 2).

3.Выбираем инструмент анализа Регрессия(рисунок 3).

4. Заполняем соответствующие позиции окна Регрессия (рисунок 4).

5. Нажимаем кнопку ОК окна Регрессия и получаем протокол решения задачи (рисунок 5)

 
 

 

 

Рисунок 2 – Активизация надстройки Анализ данных

 
 

Рисунок 3 – Выбор инструмента Регрессия

 

 
 

 

 


Рисунок 4 – Окно Регрессия

 

 

Рисунок 5 – Протокол решения задачи

 

Из рисунка 5 видно, что эмпирические коэффициенты регрессии соответственно равны

b0= 223,

b1 = 0, 0088.

Тогда уравнение парной линейной регрессии, связывающая величину ежемесячной пенсии у с величиной прожиточного минимумахимеет вид

.(3.2)

Далее, в соответствии с заданием необходимо оценить тесноту статистической связи между величиной прожиточного минимума х и величиной ежемесячной пенсии у. Эту оценку можно сделать с помощью коэффициента корреляции . Величина этого коэффициента на рисунке 5 обозначена как множественный R и соответственно равна 0,038. Поскольку теоретически величина данного коэффициента находится в пределахот –1 до +1, то можно сделать вывод о не существенности статистической связимежду величиной прожиточного минимума х и величиной ежемесячной пенсии у.

Параметр «R – квадрат», представленныйна рисунке 5 представляет собой квадрат коэффициента корреляции и называется коэффициентом детерминации. Величина данного коэффициента характеризует долю дисперсии зависимой переменной у, объясненную регрессией (объясняющей переменной х). Соответственно величина 1- характеризует долю дисперсии переменной у, вызванную влиянием всех остальных, неучтенных в эконометрической модели объясняющих переменных. Из рисунка 5 видно, что доля всех неучтенных в полученной эконометрической модели объясняющих переменных приблизительно составляет 1- 0,00145 = 0,998 или 99,8%.

На следующем этапе, в соответствии с заданием необходимо определить степень связи объясняющей переменной х с зависимой переменной у, используя коэффициент эластичности. Коэффициент эластичности для модели парной линейной регрессии определяется в виде:

. (3.3)

Тогда

Следовательно, при изменении прожиточного минимума на 1% величина ежемесячной пенсии изменяется на 0,000758%.

Далее определяем среднюю ошибку аппроксимации по зависимости

 

. (3.4)

Для этого исходную таблицу 1 дополняем двумя колонками, в которых определяем значения, рассчитанные с использованием зависимости (3.2) и значения разности .

 

Таблица 3.2. Расчет средней ошибки аппроксимации.

 

Область Средний размер назначенных ежемесячных пенсий, у.д.е., у Прожиточный минимум в среднем на одного пенсионера в месяц, у.д.е., х  
Орловская       0,032
Рязанская       0,045
Смоленская       0,021
Тверская       0,012
Тульская       0,028
Ярославская       0,017
        S=0,155

 

Тогда средняя ошибка аппроксимации равна

 

.

Из практики известно, что значение средней ошибки аппроксимации не должно превышать (12…15)%

На последнем этапе выполним оценкустатистической надежности моделирования спомощью F – критерия Фишера. Для этого выполним проверку нулевой гипотезы Н0 о статистической не значимости полученного уравнения регрессиипо условию:

если при заданном уровне значимости a = 0,05 теоретическое (расчетное) значение F-критерия больше его критического значения Fкрит (табличного), то нулевая гипотеза отвергается, и полученное уравнение регрессии принимается значимым.

Из рисунка 5 следует, что Fрасч = 0,0058. Критическое значение F-критерия определяем с помощью использования статистической функции FРАСПОБР (рисунок 6). Входными параметрами функции является уровень значимости (вероятность) и число степеней свободы 1 и 2. Для модели парной регрессии число степеней свободы соответственно равно 1 (одна объясняющая переменная) и n-2 = 6-2=4.

 
 

Рисунок 6 – Окно статистической функции FРАСПОБР

 

Из рисунка 6 видно, что критическое значение F-критерия равно 7,71.

Так как Fрасч < Fкрит, то нулевая гипотеза не отвергается и полученное регрессионное уравнение статистически незначимо.

13. Построение модели множественной регрессии с использованием EXCEL.

В соответствии с вариантом задания, используя статистический материал, необходимо.

1. Построить линейное уравнение множественной регрессии пояснить экономический смысл его параметров.

2. Дать сравнительную оценку тесноты связи факторов с результативным признаком с помощью средних (общих) коэффициентов эластичности.

3. Оценить статистическую значимость коэффициентов регрессии с помощью t-критерия Стьюдента и нулевую гипотезу о значимости уравнения с помощью F-критерия.

4. Оценить качество уравнения посредством определения средней ошибки аппроксимации.

Исходные данные для построения модели парной регрессии приведены в таблице 3.3.

 

Таблица 3.3. Исходные данные.

 

Чистый доход, млн. долларов США у Оборот капитала, мл. долл. США, х1 Использованный капитал, мл. долл. США, х2
6,6 6,9 83,6
2,7 93,6 25,4
1,6 10,0 6,4
2,4 31,5 12,5
3,3 36,7 14,3
1,8 13,8 6,5
2,4 64,8 22,7
1,6 30,4 15,8
1,4 12,1 9,3
0,9 31,3 18,9

 

Технология построения уравнения регрессии аналогична алгоритму, изложенному в пункте 3.1. Протокол построения уравнения регрессии показан на рисунке 7.

 

ВЫВОД ИТОГОВ      
Регрессионная статистика    
Множественный R 0,901759207    
R-квадрат 0,813169667    
Нормированный R-квадрат 0,759789572    
Стандартная ошибка 0,789962026    
Наблюдения      
Дисперсионный анализ      
  df MS F
Регрессия   9,50635999 15,23357468
Остаток   0,624040003  
Итого      
  Коэффициенты t-статистика  
Y-пересечение 1,113140304 2,270238114  
Переменная X1 -0,000592199 -0,061275574  
Переменная X2 0,063902851 5,496523193  

Рисунок 7. Вывод итогов.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...