Зависимость времени от энтропии и энтальпии систем
Следовательно, существует прямая зависимость масштаба времени от энтропии S системы. Чем ниже энтропия, т.е. чем выше уровень взаимодействия в системе, тем значительнее ее временной масштаб, и наоборот: с ростом энтропии в умирающих системах масштаб времени уменьшается и приближается к бесконечно малому. Система "садится" на Мировое время, которое для нее, в сущности, как бы перестает существовать (рис. 113) (XVI.6) Возвращаясь к уравнению времени системы, мы теперь видим, что энергия системы не может быть равна нулю. Такие системы не могут существовать в абсолютном пространстве. Энергия может быть больше или равна Мировой энергии: . Рис. 113. Уравнение времени: t0 - Мировое время; tS - масштаб сингулярного времени в момент Большого взрыва Меньше энергии Мирового пространства она быть не может, ибо становится частью его после перехода в равновесное состояние. Таким образом, при Е = Е0, t = t0. График изменения масштаба времени системы приведен на рис.113. В качестве верхнего предела энергии следует принять энергию Е сингулярной массы до момента Большого взрыва. Тогда t будет характеризовать предельно максимальный масштаб времени взаимодействия на уровне сингулярной массы. Таким образом: (XVI.7) при (XVI.8) Это уравнения, характеризующие масштаб времени сингулярной массы. Как известно, энтропия макросостояния системы определяется числом реализируемых его микросостояний, т.е. микровзаимодействий. При релятивистском обобщении термодинамики необходимо использовать не энтропию, а энтальпию Н системы, где вместо объема V берется давление Р: Н = Н/S, Р, N (где N - число частиц), (XVI.9) чтобы исключить термодинамические потенциалы, не отвечающие Лоренц-преобразованиям (Базаров, 1991). Тем не менее на качественном уровне все рассуждения, высказанные выше относительно энтропии, верны и для энтальпии системы. Масштаб времени взаимодействующей системы определяется ее энтальпией:
t ~ 1/H, (XVI.10) где энтальпия Н - тепловая функция. Для 1 моль идеального газа - Н = Е + РV, где PV = RT. Здесь R = 8,3 - газовая постоянная, Т - температура среды, К - градусы Кельвина. Следовательно, Н = Е + RТ, т.е. с точностью до постоянной RТ энтальпия системы Н определяется ее энергией Е. И. Кант не представлял материю без пространства, но пространство без материи он допускал: "...никоим образом нельзя себе представить, что нет никакого пространства, но легко себе представить, что в нем нет никаких предметов". Кант исходил в своем заключении из чувственного восприятия мира. В его время еще не знали о существовании физических полей, атомов и частиц, которыми буквально заполнено Мировое пространство за пределами островков астрономических масс различного структурного уровня. Однако Эйнштейн строил общую теорию относительности опираясь на известные уже данные о гравитационных и электромагнитных полях. И тем не менее он, как и Кант, не придавал первостепенного значения материальным системам, распределенным в пространстве, отдавая предпочтение пространственно-временной метрике. Первичным в ОТО является не материя, а пространство-время. Сегодня становится понятным, что общими физическими инвариантами являются движение и три его составляющие - масса, пространство и время (Вейник, 1968). Иерархическая структура на мегауровне простирается от микромира (элементарные частицы, атомы, молекулы) до макромира (планеты, астероиды, биосистемы) и далее до мегамира (звезды, шаровые скопления, галактики, метагалактики). Каждый этот уровень обладает различной энергонасыщенностью, и следовательно, время внутри каждой системы течет с различной скоростью. Однако сторонний наблюдатель, находящийся вне такой системы, не может отличить это различие от масштаба времени, характерного для системы, в которой находится сам наблюдатель. Наблюдатель же, находящийся внутри системы, живет масштабом времени данной системы. Перенося этот закон на социальный уровень организации мира, мы неизбежно приходим к заключению: надо быть членом общества, чтобы понять его.
Масштаб времени биосистем Энергетика биосистем, как и в неживой материи, обнаруживает связь с массой. Однако эта зависимость чаще всего находится в обратном соотношении. Энергооснащенность малых органических систем выше, чем больших, массивных. Она всецело определяет интенсивность взаимодействий внутри организма, т.е. интенсивность обмена веществ. Обычно у крупных особей этот процесс идет в замедленном режиме по сравнению с мелкими (слон и бабочка-однодневка). Отсюда масштаб времени таких биосистем будет различен. Он зависит от интенсивности обмена веществ, т.е. от количества событий, происходящих в единицу времени. Та же бабочка за сутки проживает полный цикл жизни, как слон за свои 40 лет. Повышенная энергетика в детстве и юности человека воплощается в его представлении очень долгого года, длинного лета и т.д. В старости с уменьшением скорости обмена веществ и, следовательно, затуханием энергооснащенности организма время в сознании человека сжимается и становится короче, т.е. его масштаб уменьшается, при , , как это следует из уравнения времени. Таким образом, продление жизни - это не только возрастная категория. Можно увеличивать масштаб времени текущей жизни путем ускорения обмена веществ (медицинский путь) или увеличением числа событий в суточном, месячном, годовом ритме человеческой активности (социальный путь). Иными словами, человек, проводящий многие часы лежа на диване, объективно живет меньше человека путешествующего, занимающегося спортом, т.е. активного в обществе и пространстве.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|