Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Геотермальные электростанции




 

На геотермальных электростанциях (ГеоТЭС) в качестве источника энергии используется теплота земных недр. На основе геофизических исследований установлено, что температура земной коры возрастает на 1 °С при увеличении глубины на 30–40 метров. Таким образом, на глубине 3–4 км достигается температура кипения воды, а на глубине 10–15 км температура породы составляет 1000–1500 °С. В некоторых районах температура горячих источников достаточно высока в непосредственной близости от поверхности.

Источником геотермальной теплоты является горячая магма, которая проникает из недр Земли и в некоторых местах близко подходит к поверхности. Источники глубинной теплоты размещаются, как правило, вблизи границ литосферных плит и в районах повышенной геологической активности. Месторождения геотермальной энергии разделяются на шесть видов:

 гидротермальные системы (парогидротермы), залегающие на глубине до 3 км, рис. 23;

 месторождения низкотемпературной геотермальной теплоты (100…200 °С);

 системы аномально высокого давления (глубина до 10 км);

 сухие горячие горные породы (глубина до 10 км);

 магма (на глубине до 10 км).

В настоящее время широкое применение находят месторождения первого типа.

При освоении геотермальных месторождений возникают сложные проблемы, препятствующие широкомасштабному использованию этого вида энергии. Во-первых, температура геотермальных флюидов гораздо ниже, чем у пара, вырабатываемого на обычной ТЭС, поэтому необходимо принимать специальные меры, направленные на эффективное использование энергии. Во-вторых, геотермальные воды содержат большое количество растворенных минеральных веществ, имеющих высокую химическую агрессивность. При попадании этих веществ на лопатки турбины происходит их быстрое разрушение. Кроме того, на поверхностях трубопроводов и другого тепломеханического оборудования происходит значительное солеотложение. Поэтому необходимы специальные меры для предварительной очистки теплоносителя от вредных примесей.

Имеют место и значительные экологические проблемы:

 вероятность стимулирования землетрясений в результате гидравлического разрыва пласта;

 просадка почвы вследствие отбора воды;

 сильный шум, создаваемый из-за того, что при выходе на поверхность происходит резкое падение давления геотермального флюида;

 выброс вредных газов (двуокиси углерода СО2 и сероводорода );

 трудности с ликвидацией отработанного рассола.

ГеоТЭС достигли в настоящее время уровня достаточной конкурентоспособности и широко используются в ряде стран, обладающих ресурсами геотермальной энергии. В основном это ГеоТЭС на парогидротермах (рис. 23). В мире сегодня работают более 170 блоков ГеоТЭС суммарной мощностью более 7000 МВт, технология и оборудование ГеоТЭС на парогидротермах в основном разработаны. Вместе с тем на всех действующих ГеоТЭС возникают специфические проблемы экологии, солеотложений, коррозии металлических частей основного оборудования. Около 40% вынужденных аварийных остановов турбин на ГеоТЭС происходит из-за заноса солями первых двух ступеней сопловой решетки турбины и коррозионно-эрозионного разрушения последней ступени турбины. Кроме того, в Японии неоднократно происходили остановы ГеоТЭС по требованию природоохранных органов в связи с загрязнением окрестностей станций сероводородом и солевыми геотермальными водами.

Россия располагает большими потенциальными запасами геотермальной энергии в виде парогидротерм вулканических районов и энергетических термальных вод с температурой 60…200 °С в платформенных и предгорных районах. До последнего времени из за дешевизны органического топлива использование этих запасов было незначительным (Паужетская ГеоТЭС на Камчатке мощностью 11 МВт, системы геотермального теплоснабжения на Северном Кавказе и Камчатке с годовой экономией топлива около 1 млн. т.у.т.). По мере приближения цен на топливо к мировым рентабельность геотермальной энергетики повышается и появляется возможность строительства мощных ГеоТЭС.

В настоящее время применяются два основных способа использования геотермальной энергии:

 ГеоТЭС на парогидротермах.

 Двухконтурные ГеоТЭС, использующие низкотемпературное (100–200 °С) тепло термальных вод.

Электростанции первого типа строятся по одноконтурной и двухконтурным схемам. Одноконтурная ГеоТЭС работается так же, как и обычная ТЭС. Основное отличие заключается в том, что рабочее тело перед подачей на лопатки турбины проходит сложную систему очистки от агрессивных примесей.

Для кардинального решения проблем экологии, солеотложений, коррозии, эрозии разработана двухконтурная технологическая схема (рис. 25), согласно которой в комплект оборудования добавляется парогенератор. На «горячей» стороне парогенератора конденсируется геотермальный пар; на «холодной» стороне генерируется вторичный пар, полученный из питательной воды, химически очищенной традиционными методами. При этом используется обычная паровая турбина. В двухконтурной схеме за счет отсутствия газов во вторичном паре будет получен более глубокий вакуум в конденсаторе и этим будет компенсирована потеря потенциала геотермального пара парогенераторе.

 

На месторождениях термальных вод с небольшой температурой (100…200 °С), применяются двухконтурные ГеоТЭС на низкокипящих рабочих веществах (хладоне R-142в). Потенциальные запасы таких термальных вод сосредоточены в основном на Северном Кавказе в пластах на глубине 2,5…5 км и могут обеспечить создание геотермальных станций общей мощностью в несколько миллионов киловатт. По экономическим показателям в настоящее время такие станции приближаются к станциям на органическом топливе (стоимость электроэнергии в зависимости от глубины скважин и температуры воды может составлять 3…5 центов за кВт×ч). Уже в ближайшие годы по мере роста потребления электроэнергии и повышения стоимости топлива геотермальные станции могут составить конкуренцию традиционным электростанциям.

Наша страна – пионер в создании энергоустановок на низкокипящих рабочих телах (РТ). Первая в мире опытная ГеоТЭС мощностью 600 кВт на хладоне R-12 была построена на Паратунском месторождении термальных вод на Камчатке еще в 1967 г.

Технологическая схема двухконтурной ГеоТЭС показана на рис. 26. Применяемое оборудование обеспечивают добычу термальной воды, эффективное преобразование ее тепла в электроэнергию, закачку отработанной воды и продуктов промывки теплообменников в пласт.

Для эффективного использования низкотемпературных геотермальных вод разработана перспективная геотермальная модульная энергоустановка на бинарном водоаммиачном рабочем теле (РТ). Главное преимущество такой энергоустановки (рис. 27) состоит в возможности ее использования во всем интервале температур термальных вод: от 90 до 220 °С. ГеоТЭС на индивидуальных РТ проектируются на определенную температуру греющей воды. Ее изменение более чем на 10…20 °С приводит к значительному снижению КПД и экономических показателей. Путем изменения концентрации компонентов бинарного РТ можно обеспечить хорошие показатели энергоустановки без изменения ее конструкции во всем указанном интервале температур греющего источника.

В настоящее время в России начато строительство двух коммерческих ГеоТЭС: Мутновской на Камчатке суммарной мощностью 200 МВт и Океанской в Сахалинской обл. суммарной мощностью 30 МВт. Эти ГеоТЭС будут сооружены с применением модульных блоков мощностью 4…20 МВт полной заводской готовности, которые изготавливает Калужский турбинный завод. Для таких ГеоТЭС предпочтителен базовый режим работы, так как эксплуатационные скважины не допускают резких изменений давления и расхода.

Рассмотренные ГеоТЭС географически «привязаны» к парогидротермам, поэтому районы их применения в России ограничены. Гораздо большее распространение могут иметь ГеоТЭС на термальной воде с температурой 100…200 °С. Такие станции должны быть двухконтурными с низкокипящим рабочим телом во втором контуре.

Потенциальные запасы таких термальных вод сосредоточены в основном на Северном Кавказе в пластах на глубине 2,5…5 км и могут обеспечить создание ГеоТЭС общей мощностью в несколько миллионов киловатт. Скважины термальных вод допускают регулирование расхода, поэтому на двухконтурных ГеоТЭС возможно регулирование мощности без потерь теплоносителя.

В США разработана схема (рис. 28) для использования энергоресурсов, содержащихся в геотермальных системах аномально высокого давления. В этих геотермальных месторождениях горячая вода «заперта» в глубоко залегающих осадочных бассейнах. Температура воды составляет 200 °С, а давление достигает 500 …900 МПа. Кроме того, вода содержит большое количество растворенного метана, который является ценным энергетическим ресурсом. В ГеоТЭС, показанной на рис. 28, применяются следующие процессы преобразования энергии:

получение метана, который может использоваться в качестве энергетического топлива;

выработка электрической энергии с помощью гидроагрегата путем использования высокого давления геотермального флюида;

 утилизация теплоты для испарения низкокипящего рабочего тела, например изобутана.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...