Аксиоматические методы в математике
Стр 1 из 5Следующая ⇒ Полисемия Полисемия, или многозначность слов возникает вследствие того, что язык представляет систему, ограниченную по сравнению с бесконечным многообразием реальной действительности, так что говоря словами академика Виноградова, " Язык оказывается вынужденным разносить бесчисленное множество значений по тем или иным рубрикам основных понятий". (Виноградов "Русский язык" 1947). Нужно различать различное употребление слов в одном лексико-семантическом варианте и действительное различие слова. Так, например, словом (das)Ol можно обозначить ряд различных масел, кроме коровьего (для которого существует слово Butter). Однако из этого не следует, что, обозначая различные масла, слово Ol будет иметь каждый раз другое значение: во всех случаях значение его будет одно и то же, а именно масло(всякое, кроме коровьего). Так же как например значение слова Tisch стол независимо от того, какой вид стола обозначает слово в данном конкретном случае. Иначе обстоит дело, когда слово Ol обозначает нефть. Здесь на первый план выдвигается уже не сходство нефти по линии маслянистости с различными сортами масла, а особое качество нефти - горючесть. И при этом со словом Ol будут соотноситься уже слова, обозначающие различные виды топлива: Kohl, Holz и т.д. Это дает нам возможность выделить у слова Ol два значения (или говоря иначе, два лексико-семантических варианта): 1) масло (не животное) 2) нефть.
Многозначность слова настолько большая и многоплановая проблема, что самые разнообразные проблемы лексикологии так или иначе оказываются связанными с нею. В частности с этой проблемой некоторыми своими сторонами соприкасается и проблема омонимии.
Синонимия Синонимы - это близкие по значению, но разно звучащие слова, выражающие оттенки одного понятия.
Антонимия Есть три вида антонимов: 6. Аксиоматическое построение системы натуральных чисел. Аксиоматический метод построения математической теории. Требования к системе аксиом: непротиворечивости, независимости, полноты. Аксиоматика Пеано. Понятие натурального числа с аксиоматических позиций. Модели системы аксиом Пеано. Сложение и умножение натуральных чисел с аксиоматических позиций. Упорядоченность множества натуральных чисел. Свойства множества натуральных чисел. Вычитание и деление множества натуральных чисел с аксиоматических позиций. Метод математической индукции. Введение нуля и построение множества целых неотрицательных чисел. Теорема о делении с остатком.
Основные понятия и определения Число – это выражение определенного количества. Натуральное число элемент неограниченно продолжающейся последовательности. Натуральные числа (естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел — числа, используемые при: перечислении (нумеровании) предметов (первый, второй, третий, …); обозначении количества предметов (нет предметов, один предмет, два предмета, …). Аксиома – это основные исходные положения (самоочевидные принципы) той или иной теории, из которых путем дедукции, то есть чисто логическими средствами, извлекается все остальное содержание этой теории. Число, которое имеет только два делителя (само это число и единицу) называется - простым числом. Составное число - это такое число, которое имеет более двух делителей. §2. Аксиоматика натурального числа Натуральные числа получаются при счете предметов и при измерении величин. Но если при измерении появляется числа, отличные от натуральных, то счет приводит только к числам натуральным. Чтобы вести счет, нужна последовательность числительных, которая начинается с единицы и которая позволяет осуществлять переход от одного числительного к другому и столько раз, сколько это необходимо. Иначе говоря, нужен отрезок натурального ряда. Поэтому, решая задачу обоснования системы натуральных чисел, в первую очередь надо было ответить на вопрос о том, что же представляет собой число как элемент натурального ряда. Ответ на это был дан в работах двух математиков - немца Грассмана и итальянца Пеано. Они предложили аксиоматику, в которой натуральное число обосновывалось как элемент неограниченно продолжающейся последовательности.
Аксиоматическое построение системы натуральных чисел осуществляется по сформулированным правилам. Пять аксиом можно рассматривать как аксиоматическое определение основных понятий: - 1 есть натуральное число; - следующее за натуральным числом есть натуральное число; - 1 не следует ни за каким натуральным числом; - если натуральное число а следует за натуральным числом b и за натуральным числом с, то b и с тождественны; - если какое-либо предложение доказано для 1 и если из допущения, что оно верно для натурального числа n, вытекает, что оно верно для следующего за n натурального числа, то это предложение верно для всех натуральных чисел. Единица – это первое число натурального ряда, а также одна из цифр в десятичной системе счисления. Считается, что обозначение единицы любого разряда одним и тем же знаком (довольно близким современному) появилось впервые в Древнем Вавилоне приблизительно за 2 тысячи лет до н. э. Древние греки, считавшие числами лишь натуральные числа, рассматривали каждое из них как собрание единиц. Самой же единице отводится особое место: она числом не считалось. И. Ньютон писал: «… под числом мы понимаем не столько собрание единиц, сколько отвлеченное отношение одной величины к другой величине, условно принятой нами за единицу». Таким образом, единица уже заняла своё законное место среди других чисел. Арифметические действия над числами имеют самые различные свойства. Их можно описать словами, например: «От перемены мест слагаемых сумма не меняется». Можно записать буквами: a+b = b+a. Можно выразить специальными терминами. Мы применяем основные законы арифметики часто по привычке, не осознавая этого: 1) переместительный закон (коммутативность), – свойство сложения и умножения чисел, выражаемое тождествами: a+b = b+a a*b = b*a; 2) cочетательный закон (ассоциативность), – свойство сложения и умножения чисел, выражаемое тождествами: (a+b)+с = а+(b+с) (a*b)*с = а*(b*с); 3) распределительный закон (дистрибутивность), – свойство, связывающее сложение и умножение чисел и выражающееся тождествами: a*(b+с) = а*b+а*с (b+с) *a = b*а+с*а. После доказательства переместительного, сочетательного и распределительного (по отношению к сложению) законов действия умножения дальнейшее построение теории арифметических действий над натуральными числами не представляет уже принципиальных затруднений.
В настоящее время в уме или на листке бумаги мы делаем лишь самые простые вычисления, все чаще и чаще поручая более сложную вычислительную работу калькуляторам, вычислительным машинам. Однако в основе работы всех вычислительных машин – простых и сложных – лежит самая простая операция – сложение натуральных чисел. Оказывается, самые сложные расчеты можно свести к сложению, только делать эту операцию надо многие миллионы раз. Аксиоматические методы в математике Одной из основных причин развития математической логики является широкое распространение аксиоматического метода в построении различных математических теорий, в первую очередь, геометрии, а затем арифметики, теории групп и т.д. Аксиоматический метод можно определить как теорию, которая строится на предварительно выбранной системе неопределяемых понятий и отношений между ними. В аксиоматическом построении математической теории предварительно выбирается некоторая система неопределяемых понятий и отношений между ними. Эти понятия и отношения называются основными. Далее вводятся аксиомы т.е. основные положения рассматриваемой теории, принимаемые без доказательств. Все дальнейшее содержание теории выводится логически из аксиом. Впервые аксиоматическое построение математической теории было предпринято Евклидом в построении геометрии.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|