Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Управление подготовкой специалистов для системы безопасности

Вступление

 

Cоздание и совершенствование компьютеров привело и продолжает приводить к созданию новых технологий в различных сферах научной и практической деятельности. Одной из таких сфер стало образова­ние - процесс передачи систематизированных знаний, навыков и умений от одного поколения к другому. Будучи само по себе мощной информационной сферой и владея опытом использования различных классических (не компьютерных) инфор­мационных систем, образование быстро откликнулось на возможности современ­ной техники. На наших глазах возникают нетрадиционные информационные системы, связанные с обучением; такие системы естественно называть информаци­онно-обучающими.

С началом промышленного изготовления компьютеров первых поколений и их появлением в образовательных учреждениях возникло новое направление в педаго­гике - компьютерные технологии обучения. Первая обучающая система Р1аю на основе мощной ЭВМ фирмы «Соntго1 Dаtа Соrроrаtiоn» была разработана в США в конце 50-х годов и развивалась в течение 20 лет. По-настоящему массовыми создание и использование обучающих программ стали с начала 80-х годов, когда появились и получили широкое распространение персональные компьютеры. С тех пор образовательные применения ЭВМ выдвинулись в число их основных примене­ний наряду с обработкой текстов и графики, оттеснив на второй план математиче­ские расчеты.

С появлением примеров компьютерного обучения к созданию компьютерных обучающих программ приобщились десятки тысяч педагогов - специалистов в различных областях знания, чаще всего в технических науках. В разрабатываемых ими программах, опираясь в основном на интуицию и практический опыт, они воплощали свои представления о преподавании конкретных дисциплин с помощью компьютеров. Педагоги-теоретики долгое время оставались в стороне от этого нового направления в обучении. В результате до сих пор отсутствует общепризнан­ная психолого-педагогическая теория компьютерного обучения, компьютерные обучающие программы продолжают создаваться и применяться без необходимого учета принципов и закономерностей обучения.

Благодаря своим конструктивным и функциональным особенностям современ­ный персональный компьютер является уникальной по своим возможностям обучающей машиной. Он находит применение в обучении самым разнообразным дисциплинам и служит базой для создания большого числа новых информационных технологий обучения. Какие же особенности персонального компьютера так выгодно отличают его от прежде известных обучающих машин и технических средств обучения?

Это не столько какая-то одна возможность персонального компьютера, сколько сочетание

• интерактивного (диалогового) режима работы (действие человека - реакция компьютера -... - действие человека - реакция компьютера и т.д.);

• «персональности» (небольшие размеры и стоимость, позволяющие обеспечить компьютерами целый класс);

•хороших графических, иллюстративных возможностей (экраны распростра­ненных модификаций имеют разрешающую способность 640х480 точек при 16 млн. цветовых оттенков - это качество хорошего цветного телевизора или журнальной иллюстрации);

• простоты управления, наличия гибких языков программирования человеко-машинного диалога и компьютерной графики;

• легкости регистрации и хранения информации о процессе обучения и работе учащегося, а также возможности копирования и размножения обучающих про­грамм.

Технические возможности персонального компьютера, если компьютер исполь­зуется как обучающее средство, позволяют

• активизировать учебный процесс;

• индивидуализировать обучение;

• повысить наглядность в предъявлении материала;

• сместить акценты от теоретических знаний к практическим;

• повысить интерес учеников к обучению.

Активизация обучения связана с диалоговым характером работы компьютера и с тем, что каждый ученик работает за своим компьютером. При традиционном классном обучении основное - это восприятие учащимися информации в устной форме, при этом ученику не часто приходится проявлять активность на уроке и учитель не в состоянии организовать и контролировать активную работу каждого ученика на его рабочем месте. Поэтому традиционное обучение, в основном, является пассивным - многие педагоги сетуют, что на уроке активно работают 20 -30% учащихся. Если же обучение ведется в компьютерном классе, компьютер диалоговым характером своей работы стимулирует ученика к деятельности и контролирует ее результаты.

 

Типы обучающих программ

 

Основанием для классификации служат обычно особенности учебной деятельно­сти обучаемых при работе с программами. Многие авторы выделяют четыре типа обучающих программ:

• тренировочные и контролирующие;

• наставнические;

• имитационные и моделирующие;

• развивающие игры.

Программы 1-го типа (тренировочные) предназначены для закрепления умений и навыков. Предполагается, что теоретический материал уже изучен. Эти программы в случайной последовательности предлагают учащемуся вопросы и задачи и под-

считывают количество правильно и неправильно решенных задач (в случае пра­вильного ответа может выдаваться поощряющая ученика реплика). При непра­вильном ответе ученик может получить помощь в виде подсказки.

Программы 2-го типа (наставнические) предлагают ученикам теоретический ма­териал для изучения. Задачи и вопросы служат в этих программах для организации человеко-машинного диалога, для управления ходом обучения. Так если ответы, даваемые учеником, неверны, программа может «откатиться назад» для повторного изучения теоретического материала.

Программы наставнического типа являются прямыми наследниками средств программированного обучения 60-х годов в том смысле, что основным теорети­ческим источником современного компьютерного или автоматизированного обучения следует считать программированное обучение. В публикациях зарубеж­ных специалистов и сегодня под термином «программированное обучение» понимают современные компьютерные технологии. Одним из основоположников концепции программированного обучения является американский психолог Б.Ф.Скиннер.

Главным элементом программированного обучения является программа, пони­маемая как упорядоченная последовательность рекомендации (задач), которые передаются с помощью дидактической машины или программированного учебника и выполняются обучаемыми. Существует несколько известных разновидностей программированного обучения.

1. Линейное программированное обучение. Основатель - Б.Ф.Скиннер, профессор психологии Гарвардского университета, США. Впервые выступил со своей концеп­цией в 1954 г. При ее создании Скиннер опирался на бихевиористскую психологию, в соответствии с которой обучение основано на принципе S - R, т.е. на появлении некоторых факторов (S - stimulus) и реакции на них (R - reaction). По этой концеп­ции для любой реакции, соответственно усиленной, характерна склонность к повторению и закреплению. Поощрением для обучаемого является подтверждение программой каждого удачного шага, причем, учитывая простоту реакции, возмож­ность совершения ошибки сводится к минимуму.

Линейная программа в понимании Скиннера характеризуется следующими осо­бенностями:

•дидактический материал делится на незначительные дозы, называемые шага­ми, которые обучаемые преодолевают относительно легко, шаг за шагом;

• вопросы, содержащиеся в отдельных рамках программы, не должны быть очень трудными, чтобы обучаемые не потеряли интереса к работе;

• обучаемые сами дают ответы на вопросы, привлекая для этого необходимую информацию;

• в ходе обучения учащихся сразу же информируют о том, правильны или оши­бочны их ответы;

• все обучаемые проходят по очереди все рамки программы, но каждый делает это в удобном ему темпе;

• во избежание механического запоминания информации одна и та же мысль повторяется в различных вариантах и нескольких рамках программы.

2. Разветвленная программа. Автор концепции разветвленного программирова­ния - Норман А.Кроудер. Разветвленная программа основана на выборе одного правильного ответа из нескольких данных, она ориентирует на текст многократно­го выбора. По мнению автора, выбор правильных ответов требует от обучаемых больших умственных способностей, нежели припоминание какой-то информации. Непосредственное подтверждение правильности ответа он считает своеобразным типом обратной связи.

Вопросы, в понимании Кроудера, имеют целью

• проверить, знает ли ученик материал;

• в случае отрицательного ответа отсылать обучаемого к координирующим I соответственно обосновывающим ответ порциям информации;

• возможность закрепления основной информации с помощью рациональны:

упражнений;

• увеличение усилий обучаемого и одновременную ликвидацию механической обучения через многократное повторение информации;

• формирование требуемой мотивации обучаемого.

Если основой линейной программы является стремление избежать ошибок, то разветвленная программа не направлена на ликвидацию ошибок в процессе обучения; ошибки Кроудер трактует как возможность обнаружить недостатки в знаниях обучаемых, а также выяснить, какие проблемы обучаемые уяснили недостаточно благодаря этому о его программе можно было бы сказать, что она сводится «управлению процессом мышления», в то время как линейная программа основана на «управлении ответами».

Постепенно оба классических типа - линейное и разветвленное программированное обучение - уступили место смешанным формам.

По своей методической структуре педагогическое программное средство (ППС), реализующие программированный подход, характеризуются наличием следующих блоков:

• блока ориентировочной основы действий (ООД), содержащего текстово- графическое изложение теоретических основ некоторого раздела автоматизированного курса;

• контрольно-диагностического блока, контролирующего усвоение ООД и управляющего обучением;

• блока автоматизированного контроля знаний, формирующего итоговую оценку знаний учащегося.

Известно несколько видов организации программ наставнического типа, назы ваемых также алгоритмами программированного обучения.

1.Последовательно-подготовительный алгоритм. Начальный элемент задания относительно прост, он подготавливает выполнение второго, более сложного, а тот в свою очередь, третьего и т.д. Заключительные элементы имеют достаточно высокий уровень сложности.

2. Параллельно-подготовительный алгоритм. Начальные элементы заданий независимо один от другого подготавливают выполнение следующего за ним комплексного элемента высокого уровня.

3. Последовательно-корректирующий алгоритм. Начальные элементы задания имеют высокий уровень сложности, а каждый последующий элемент корректирует выполнение предыдущего, указывая, например, на противоречия, к которым приводят неправильные ответы.

4. Параллельно-корректирующий алгоритм. Обучаемому предлагается комплексный элемент высокого уровня, последующие элементы играют роль наводящих (подсказывающих), причем с разных позиций, независимо один от другого.

5. Алгоритм переноса. Приводятся два массива элементов А(N) и В(N). Ими могут быть понятия, отношения, действия, характеристики и т.д. Требуется установить логическое соответствие между ними.

6. Аналитический алгоритм. Предлагаются элементы А(N). Необходимо установить принадлежность каждого из них к одному из классов В(К).

7. Синтезирующий алгорипт. Элементы массива А(N) уже разбиты на подгруппы. Задача обучаемого - установить критерий, по которому осуществлялась классификация.

8. Алгоритм упорядочения. Элементы массива А(N) необходимо упорядочить по некоторому указанному критерию В(К). Этот алгоритм требует для своего выпол­нения комплексной умственной деятельности.

Большинство инструментальных систем предоставляют преподавателю возмож­ность составлять обучающие и контролирующие задания с различными типами ответов

1. С выборочным ответом. Обучаемому предлагается задание (вопрос) и набор (меню) готовых ответов, из которых он может сделать выбор правильного, по его мнению, ответа (утверждения).

Такой вариант задания наиболее удобен для машинной реализации, так как ЭВМ анализирует лишь номер, по которому легко определяет правильность ответа. На первый взгляд задания с выборочным ответом имеют ряд недостатков, а имен­но: обязательное предъявление верного ответа, возможность его угадывания, а значит, ограничение мыслительной деятельности обучаемого. Эти недостатки существенно снижаются путем правильного, творческого и остроумного примене­ния различных принципов составления таких заданий.

Вероятность угадывания правильного ответа сводится к минимуму следующими простыми приемами:

• повторением аналогичного по смыслу вопроса в нескольких различных формах;

• увеличением числа элементов для выбора (при выборе из пяти ответов вероят­ность угадывания равна 0,2);

• увеличение числа верных ответов до двух или до нескольких пар. Подбирать ответы в заданиях необходимо таким образом, чтобы они были правдоподобными и равнопривлекательными.

2. С частично-конструируемъш ответом. Задания этого типа являются промежу­точным и связующим звеном между заданиями с выборочным ответом и свободно-конструируемым. Частично-конструируемый ответ составляется из частей, предло­женных преподавателем.

Эта форма используется для заданий по составлению определений законов, тео­рем, стандартных формулировок и т.д. В верный ответ входят, как правило, не все элементы задания, и порядок их выбора не является жестким.

3. Со свободно-конструируемым ответом. Задания такого типа являются наибо­лее предпочтительными для автоматизированного обучения и контроля. Они позволяют слушателю общаться с компьютером на естественном языке, имитируя диалог обучаемого и преподавателя. Задания со свободно-конструируемым ответом наиболее сложны для обучаемого, так как полностью исключают возможность угадывания и требуют значительной умственной работы перед вводом в компьютер ответа, набираемого на клавиатуре в свободной форме. В то же время резко возрас­тает сложность деятельности преподавателя - автора курса по формированию автономных ответов для анализатора инструментальной системы.

Эталон может содержать, как правило, не более 80 символов, включая пробелы. Ответ обучаемого на заданный вопрос сравнивается с текстом эталона и вырабаты­вается соответствующий признак ответа: «верный», «неверный», «предполагаемый» и т.д. Далее программа переходит к тому кадру сценария, который соответствует полученному признаку.

Таким образом, автор курса формирует кадры, предъявляемые обучаемому в зависимости от признака ответа, что создает иллюзию «понимания» системой смысла введенной фразы, так как при разных ответах на один и тот же вопрос обучаемый получает и различную реакцию компьютера.

В современных инструментальных системах реализованы следующие методы сравнения эталонного ответа с ответом обучаемого.

1. Анализ по ключевым словам. Этот метод анализа достаточно прост и универсален. Эталонный ответ, заранее введенный преподавателем, используется в качестве ключа, который сравнивается с ответом обучаемого на протяжении всей строки. Ключом может быть один символ, слово или группа слов.

При использовании ключевых слов можно достичь достаточно хороших результатов. Но применять метод надо достаточно осторожно, так как возможности распознавания смысла с его помощью ограничены. Недостаток ключевого поиск выражается в том, что ответ не распознается при перестановках внутри ключа.

2. Синтаксический анализ с использованием символов частичной обработки ответа обучаемого. Этот метод анализа целесообразно использовать в том случае, когда требуется выполнить сравнение не по ключу, а по жесткому эталону. Лишний символ должен считаться ошибкой, пробелы не игнорируются. Выполняется как бы прямое (посимвольное) сравнение посимвольного ответа с эталоном. При совпадении всех символов ответа с символами эталона вырабатывается признак «верно».

Однако при работе обучаемых с курсом могут возникнуть ситуации, когда необходимо, с целью более корректного толкования смысла ответа, сделать некоторые отступления от правил прямого сравнения. В подобных ситуациях метод синтаксического анализа предусматривает средства частичной обработки ответов обучаемого.

Символы частичной обработки ответа (спецсимволы), включенные в эталон ответа, позволяют исключить, игнорировать в ответе обучаемого один или несколько символов (слов) при сравнении с эталоном. Все остальные символы, отличные от символов частичной обработки, в тексте обучаемого должны следовать в том же порядке, что и в эталоне ответа.

3. Логический анализ. Логический метод анализа дает возможность формирования ответа в свободно-конструируемой форме. В данном случае ответ может представлять собой фразу или предложение, в котором порядок слов строго не определен. В словах могут игнорироваться окончание или другие части.

Основным отличием данного метода анализа от анализа по ключевым словам является то, что исключается необходимость перечисления всех возможных последовательностей ключевых слов при рассмотрении многословных ответов, так как логический метод позволяет с помощью одного эталона проанализировать на сколько вариантов ответов. Цель этой деятельности - преодоление чрезмерно заданности ответов обучаемого, что является общим недостатком многих ППС.

Недостатками такого рода программ являются

• снижение мотивации в ходе работы с программой;

• возникновение «провалов» (пробелов) в знаниях, связанных с непроизвольным рассеянием внимания в процессе работы с программой, а также ослаблением системного связывания знаний при отсутствии их интонационного выделения;

• сложность и высокая трудоемкость организации учебного диалога, а также диагностирующей и управляющей обучением части программы.

Ввиду чрезвычайно высокой трудоемкости написания программ такого рода на языках программирования и высоких требований к программистской квалификации разработчиков, они часто разрабатываются с использованием программных оболочек автоматизированных учебных курсов, имеющих свой язык программирования, интерфейс, рассчитанный на разработчика-непрограммиста.

Существует и продолжает разрабатываться большое количество инструментальных программ такого вида. Общим их недостатком является высокая трудоемкость разработки, затруднения организационного и методического характера при использовании в реальном учебном процессе школы. Организационные трудности связаны с тем, что такие программы невозможно использовать в структуре урок;

из-за больших различий в темпе обучения разных учащихся. Методические трудности проявляются в том, что многие педагоги нередко склонны не соглашаться с методическими решениями и ходами при изложении теоретического материала, предложенными разработчиками инструментальной программы. В работе хороше­го учителя много творческих, авторских моментов, в важности которых часто не отдают себе отчета создатели программ.

Программы 3-го типа (моделирующие) основаны на графически-иллюстра­тивных возможностях компьютера, с одной стороны, и вычислительных, с другой, и позволяют осуществлять компьютерный эксперимент. Такие программы предостав­ляют ученику возможность наблюдать на экране дисплея некоторый процесс, влияя на его ход подачей команды с клавиатуры, меняющей значения параметров.

Программы 4-го типа (игры) предоставляют в распоряжение ученика некоторую воображаемую среду, существующий только в компьютере мир, набор каких-то возможностей и средств их реализации. Использование предоставляемых програм­мой средств для реализации возможностей, связанных с изучением мира игры и деятельностью в этом мире, приводит к развитию обучаемого, формированию у него познавательных навыков, самостоятельному открытию им закономерностей, отношений объектов действительности, имеющих всеобщее значение.

Наибольшее распространение получили обучающие программы первых двух типов в связи с их относительно невысокой сложностью, возможностью унифика­ции при разработке многих блоков программ. Если программы 3-го и 4-го типов требуют большой работы программистов, психологов, специалистов в области изучаемого предмета, педагогов-методистов, то технология создания программ 1-го и 2-го типов ныне сильно упростилась с появлением инструментальных средств или наполняемых автоматизированных обучающих систем (АОС).

Основные действия, выполняемые программами первых двух типов:

• предъявление кадра с текстом и графическим изображением;

• предъявление вопроса и меню вариантов ответа (или ожидание ввода открыто­го ответа);

• анализ и оценка ответа;

• предоставление кадра помощи при нажатии специальной клавиши. Они могут быть легко и унифицированно запрограммированы, так что разра­ботчику обучающей программы остается ввести в компьютер только соответст­вующий текст, варианты ответов, нарисовать на экране с помощью манипулятора «мышь» картинки. Создание обучающей программы в этом случае выполняется совершенно без программирования, не требует серьезных компьютерных познаний и по силам любому педагогу-предметнику средней школы. Названия наиболее известных отечественных АОС: «Урок», «Адонис», «Магистр», «Stratum». Исполь­зуются в России и зарубежные системы: «Linkway», «ТеасhСаd» и др. Многие из этих систем имеют хорошие графические подсистемы и позволяют создавать не только статические картинки, но и динамические графические фрагменты в духе «мультимедиа» (речь об этом пойдет ниже).

Создание обучающей системы с использованием инструментальных программ обычно проходит четыре стадии.

1. Разработка сценария обучающей программы: на этой стадии педагог должен принять решение о том, какой раздел какого учебного курса он будет переводить в обучающую программу, продумать материал информационных кадров, такие вопро­сы и варианты ответов к ним, чтобы они диагностировали трудности, с которыми будут сталкиваться ученики при освоении материала, разработать схему прохождения программы, систему взаимосвязей между ее отдельными кадрами и фрагментами.

2. Ввод в компьютер текстов отдельных кадров будущей программы, рисование картинок, формирование контролирующих фрагментов: вопросов, вариантов

ответов к ним и способов анализа правильности ответов. На этой стадии педагогу потребуется минимальное владение функциями компьютера и возможностями ввода и редактирования, встроенными в инструментальную программу.

3. Связывание отдельных элементов обучающей программы в целостную диало­говую систему, установление взаимосвязей между кадрами, вопросами и помощью, окончательная доводка программы.

4. Сопровождение программы во время ее эксплуатации, внесение в нее исправ­лений и дополнений, необходимость которых обнаруживается при ее использова­нии в реальном процессе обучения.

Очевидно, что создание обучающих программ средствами инструментальных систем поможет снять остроту главной проблемы компьютерного обучения - отсутствия в достаточном количестве и разнообразии качественных обучающих программ, так чтобы компьютерное обучение могло превратиться из жанра «показательных выступлений» на открытых уроках в действительно систематиче­ское обучение учебным дисциплинам или их большим разделам.

В качестве первого шага к компьютерным технологиям обучения нужно рас­сматривать тренирующие и контролирующие программы. Нет ничего проще (с этой задачей могут справиться даже учащиеся старших классов, изучающие информатику), чем подготовить контролирующую программу по любому разделу любого учебного курса на языке программирования ВАSIС или с использованием инструментальных программ. Использовать такие контролирующие программы можно систематически. Это не потребует кардинальных изменений в существую­щем учебном процессе и избавит учителя от непроизводительных, рутинных операций по проверке письменных работ, контролю знаний учащихся, решит проблему накопляемости оценок. Из-за тотальности контроля учащиеся получат мощный стимул к обучению.

Следующая проблема компьютерного обучения связана с тем, что использова­ние компьютера не вписывается в стандартную классно-урочную систему. Ком­пьютер - это средство индивидуального обучения в условиях нелимитированного времени, и именно в этом качестве он должен использоваться. Соответствующие организационные формы учебного процесса и труда учителей еще предстоит найти и внедрить в практику. Важно, чтобы ученик при компьютерном обучении не был ограничен жесткими временными рамками, чтобы педагогу не надо было работать «на класс» в целом, а чтобы он мог пообщаться с каждым учеником, дать индивидуальную консультацию по работе с обучающей программой и по материалу, в ней содержащемуся, помочь преодолеть индивидуальные затруднения.

При проведении урока с использованием компьютеров работа педагога прохо­дит фазы

• планирования урока (определяется место урока в системе занятий по данной дисциплине, время проведения в кабинете электронно-вычислительной техники, тип урока и его примерная структура, необходимые для его проведения программ­ные средства);

• подготовки программных средств (наполнение оболочек контролирующих программ и обучающих систем соответствующими дидактическими материалами, подбор моделирующих программ, размещение программных средств на соответст­вующем магнитном диске, проверка запускаемости программ);

• проведения самого урока;

• подведения итогов (внесение исправлений в обучающие программы, архивиро­вание их для будущего использования, обработка результатов компьютерного тестирования, удаление лишних временных файлов с магнитных дисков).

Отдельное направление использования компьютера в обучении - интегриро­вание предметных учебных курсов и информатики. При Этом компьютер ис­пользуется уже не как средство обучения, а как средство обработки информа­ции, получаемой при изучении традиционных дисциплин - математики, физики, химии, экологии, биологии, географии. С помощью инструментальных про­грамм на компьютере можно решать математические задачи в аналитическом виде, строить диаграммы и графики, проводить вычисления в табличном виде, готовить текст, схемы и т.д. Компьютер выступает при этом в качестве средства предметной деятельности, приближая стиль учебной деятельности на уроках к стандартам современной научной, технологической и управленческой деятель­ности.

Особые ожидания при таком использовании компьютера связываются с компь­ютерными телекоммуникациями, с возможностями локальных и глобальных компьютерных сетей. Весьма перспективной технологией обучения является метод групповых исследовательских проектов, моделирующий деятельность реального научного сообщества. Такая технология включает следующие моменты:

• первоначальную мотивацию исследования; обнаружение какого-либо парадок­са, постановку проблемной задачи;

• поиск объяснения парадокса, построение гипотез;

• проведение исследований, экспериментов, наблюдений и измерений, литера­турных изысканий с целью доказать или отвергнуть гипотезы, объяснения;

• групповое обсуждение результатов, составление отчета, проведение научной конференции;

• решение вопроса о практическом применении результатов исследований; раз­работку и защиту итогового проекта по теме.

Работа над проектом продолжается от двух недель до двух месяцев. На заключи­тельных стадиях работы над проектом обычно возникают новые проблемные задачи, обнаруживаются новые парадоксы, т.е. создается мотивация для осуществ­ления новых проектов.Использование компьютера очень хорошо вписывается в эту технологию обу­чения, особенно если имеется возможность реализовать компьютерные телеком­муникации: обмениваться сообщениями по электронной почте с классами в других городах и даже странах, параллельно выполняющими такой же проект. Телекоммуникационная составляющая проекта позволяет резко повысить интерес учащихся к выполнению проекта, делает естественным спользование компьюте­ра для представления результатов наблюдений и измерений, способствует форми­рованию информационной культуры учащихся. Проекты, построенные на сопос­тавлении местных условий, изучении в них общего и особенного, прививают учащимся глобальное видение мира. Учебные телекоммуникационные проекты чрезвычайно популярны в Соединенных Штатах. Сотни таких проектов для десятков тысяч классов во всех странах мира проводят ежегодно многие глобаль­ные компьютерные сети учебно-научного назначения. Имеется опыт использова­ния телекоммуникационных проектов и в российских условиях.

Содержание обучения по методу проектов является межпредметным, интегриро­ванным, привлекающим знания из различных областей, как и проблемы, возни­кающие на практике. Обучение по методу проектов, кроме изучения конкретных разделов наук, позволяет достигать и другие педагогические цели:

• развитие письменной речи;

• овладение компьютерной грамотностью, освоение текстового редактора, ком­пьютерных телекоммуникационных программ;

• развитие общих навыков решения проблем;

- развитие навыков работы в группе,

- развитие навыков творческой работы.

В перспективе – развитие учебных курсов, использующих метод групповых проектов и компьютерные телекоммуникации, по разделам краеведения в географии и истории, по биологии и литературе, по иностранным языкам.

 

Компьютерные технологии в преподавании курса ОБЖ.

 

Информатизация (компьютеризация) учебного процесса является одной из приоритетных задач современного российского образования. Компьютеры за последние пять-шесть лет стали более доступными для образовательных учреждений. Использование информационных технологий требует развития методов и организационных форм обучения. Ученик может оперировать большим количеством разнообразной информации, интегрировать ее, имеет возможность автоматизировать ее обработку, моделировать процессы и решать проблемы, быть самостоятельным в учебных действиях и т.д. Учитель также освобождается от рутинных операций, получает возможность диагностировать учащихся, следить за динамикой обучения и развития учащихся. Однако, масса учителей не готова к переходу от классно-урочной формы обучения и от объяснительного традиционного обучения к использованию информационных технологий в образовании. На начальном этапе, когда уровень компьютерной подготовки учителей еще не очень высок, разработка новых методик невозможна порой без совместной работы учителя информатики и учителя ОБЖ.

Компьютерные технологии на уроках ОБЖ используются пока весьма редко по причине слабой обеспеченности общеобразовательных школ хорошими компьютерами и явно недостаточного количества соответствующих компьютерных программ по курсу ОБЖ. Изданное по заказу МЧС в 2002 г. мультимедийное пособие для 10-го класса - первый шаг к компьютеризации обучения ОБЖ.

Преподаватели ОБЖ часто используют компьютер как вспомогательное средство для иллюстрации учебного материала. В помощь преподавателям в 2003 г. А.А. Афанасьев, А.В. Наследухов, С.К. Миронов издали библиотеку электронных наглядных пособий «Основы безопасности жизнедеятельности. 5-11 классы» (БЭНП «ОБЖ. 5-11 классы»). Однако появляются и обучающие программы. Например, в учебно-методическом пособии для учителей при обучении правилам безопасного поведения в условиях чрезвычайных ситуаций предлагаются следующие компьютерные программы:

  • Программа автоматизированных расчетов задач по ГО «Арго»;
  • Комплексная оценка обстановки при ЧС (две части);
  • Программа прогнозирования масштабов поражения АХОВ при авариях на опасных химических объектах и транспорте;
  • Войска спецназа (спасательные средства). Новейшая энциклопедия вооружения. Атлас мира (экология). Правила дорожного движения. Правила медицинской помощи. Атом на службе человеку;
  • Уроки ОБЖ в формате презентаций PowerPoint

Ресурсы Интернета:

  • МЧС (http://www.emercom.gov.ru/),
  • Министерство обороны (http://www.mil.ru/),
  • Министерство образования и науки (http://www.ed.gov.ru/),
  • Комитет по образованию правительства С.-Петербурга (http://www.educom.spb.ru/).

В 2005 г. по заказу МЧС России вышел в свет учебно-методический комплект по ОБЖ, который, по замыслу МЧС, предполагает непрерывное образование по ОБЖ с детского сада.

Электронные издания, входящие в комплект, - «Электронные издания по обучению детей в диалоговом режиме для 5—11 классов» (по сути, банк тестовых заданий) и «Электронные издания по курсу ОБЖ для 8,9 и 11 классов» (разработки уроков). «Электронные издания по курсу ОБЖ для 8, 9 и 11 классов» предназначены для подготовки и проведения учителем уроков по основным темам ОБЖ, предусмотренным Федеральным компонентом государственного стандарта основного и среднего (полного) общего образования и обязательным минимумом содержания образования 1998 г. и примерными программами предмета ОБЖ.

Эти мультимедийные издания содержат в себе «скелет» изучаемой темы - поурочно распределенные основные понятия, положения и правила, таблицы, схемы и диаграммы, иллюстративный материал в виде рисунков, фотографий, видео-и анимационных фрагментов, интерактивных схем и таблиц. Электронное пособие имеет тесты для контроля усвоения знаний, перечень наиболее сложных изучаемых терминов, их определение и пояснение. Звуковое сопровождение способствует развитию таких важных качеств, как интуиция и образное мышление. Хорошо, если бы каждая тема содержала набор практических заданий различной степени сложности, а также список учебных пособий и периодических изданий по данной теме.

Структура включает следующие разделы: «Уроки», «Журнал успеваемости», «Медиатека», «Конструктор уроков», «Энциклопедия», «Помощь». При необходимости учитель изменяет предложенное содержание в зависимости от используемой программы, отведенных часов и других условий. Пособия могут быть использованы учащимися при самостоятельном изучении ОБЖ, при подготовке к контрольно-проверочным занятиям и экзаменам по этому предмету.

Поурочные разработки можно использовать в ОУ, где на преподавание ОБЖ отводятся часы регионального компонента, в 8-м и 9-м классах (если школа работает по БУПу-1998) и в 9-, 10-, 11-х классах, если школа работает по БУПу-2004.

Можно также порекомендовать для проведения уроков по пожарной безопасности входящую в комплект компьютерную игру «Действия при угрозе и возникновении пожаров» - дидактическое средство обучения учащихся 5-7-х классов (возраст 12-14 лет), которое представляет собой набор ситуативных заданий по профилактике пожароопасных ситуаций и поведению в случае возгорания и задымления. Игра состоит из нескольких не связанных единым сюжетом уровней: «Квартира», «Школа», «Улица», «Природа», каждый из которых представлен в двух вариантах - «профилактика» и «возгорание». Приблизительное игровое время на каждом уровне варьируется от 2 до 6 мин. Используя эту игру, можно совместить игру и обучение.

Мультимедийный учебник имеет дидактические преимущества по сравнению с традиционным. Они состоят в следующем:

в технологии мультимедиа создается обучающая среда с ярким и наглядным представлением информации;

  • осуществляется интеграция значительных объемов информации на едином носителе;
  • предоставляется возможность выбора индивидуальной схемы изучения материала;
  • осуществляется обратная связь через систему тестов, что позволяет корректировать процесс изучения материала.

В

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...