Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Топологические понятия электрических цепей




Электрическая цепь характеризуется совокупностью элементов, из которых она состоит, и способом их соединения.

Ветвью называется участок цепи, обтекаемый одним и тем же током.

Узел – место соединения трех и более ветвей.

Контур – замкнутый путь, в котором один из узлов является начальным и конечным узлом пути.

Двухпо́люсник — многополюсник, имеющий две точки подключения. К ним относятся источники энергии (за исключением управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы.

Условное изображение схемы, в котором каждая ветвь заменяется отрезком линии, называется графом электрической цепи.

Отрезок линии, соответствующий ветви схемы, называется ветвью графа. Граничные точки ветви графа называют узлами графа. Ветвям графа может быть дана определенная ориентация, указанная стрелкой. Граф, у которого все ветви ориентированы, называется ориентированным.

Подграфом графа называется часть графа, т.е. это может быть одна ветвь или один изолированный узел графа, а также любое множество ветвей и узлов, содержащихся в графе.

Дерево – это связный подграф, содержащий все узлы графа, но ни одного контура.

 

Законы Кирхгофа

1.алгебраическая сумма токов в любом узле электрической цепи равна нулю

2.алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю

 

Баланс мощностей

Баланс мощностей является следствием закона сохранения энергии и может служить критерием правильности расчета электрической цепи.

 

а) Постоянный ток

Это уравнение представляет собой математическую форму записи баланса мощностей: суммарная мощность, генерируемая источниками электрической энергии, равна суммарной мощности, потребляемой в цепи.

Основные свойства линейных электрических цепей

Метод наложения

Данный метод справедлив только для линейных электрических цепей и является особенно эффективным, когда требуется вычислить токи для различных значений ЭДС и токов источников в то время, как сопротивления схемы остаются неизменными.

 

Данный метод основан на принципе наложения (суперпозиции), который формулируется следующим образом: ток в k – й ветви линейной электрической цепи равен алгебраической сумме токов, вызываемых каждым из источников в отдельности.

 

Аналитически принцип наложения для цепи, содержащей n источников ЭДС и m источников тока, выражается соотношением

Здесь - комплекс входной проводимости k – й ветви, численно равный отношению тока к ЭДС в этой ветви при равных нулю ЭДС в остальных ветвях; - комплекс взаимной проводимости k – й и i– й ветвей, численно равный отношению тока в k – й ветви и ЭДС в i– й ветви при равных нулю ЭДС в остальных ветвях.

Принцип взаимности

Принцип взаимности основан на теореме взаимности, которую сформулируем без доказательства: для линейной цепи ток в k – й ветви, вызванной единственной в схеме ЭДС , находящейся в i – й ветви, будет равен току в i – й ветви, вызванному ЭДС , численно равной ЭДС , находящейся в k – й ветви,

Иными словами, основанный на теореме взаимности принцип взаимности гласит: если ЭДС, действуя в некоторой ветви схемы, не содержащей других источников, вызывает в другой ветви ток (см. рис. 3,а), то принесенная в эту ветвь ЭДС вызовет в первой ветви такой же ток

Принцип компенсации

Принцип компенсации основан на теореме о компенсации, которая гласит: в любой электрической цепи без изменения токов в ее ветвях сопротивление в произвольной ветви можно заменить источником с ЭДС, численно равной падению напряжения на этом сопротивлении и действующей навстречу току в этой ветви.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...