Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Малые циклы (циклопропан и циклобутан) из-за большой напряженности кольца (малые углы) легко разрываются, вступая в реакции присоединения.

АЛКАНЫ (ПАРАФИНЫ)

– это предельные (или насыщенные) нециклические углеводороды, в которых все связи одинарные.

Общая формула: CnH2n+2 Все атомы углерода в алканах имеют sp3- гибридизацию. Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества. Все алканы легче воды, не растворимы в воде и не смешиваются с ней.

Химические свойства.

1) Связь углерода с водородом в алканах малополярна.

2) Поэтому разрыв её в реакциях возможен только по гомолитическому механизму:

 

Это возможно только в жестких условиях.

3) Насыщенные (предельные) углеводороды не имеют возможности вступать в реакции присоединения. Для них свойственны реакции замещения водородных атомов и расщепления. Эти реакции протекают или при нагревании, или на свету, или с применением катализаторов.

 

Алканы не реагируют с концентрированными кислотами, щелочами, перманганатом калия, бромной водой.

 

I. Реакции замещения.

1) Галогенирование: радикальное замещение. Хлор и бром на свету или при нагревании. А) хлорирование: процесс быстрый, поэтому протекает неизбирательно, образуется смесь продуктов замещения: СН3-СН2-СН3 + Cl2(свет)à CH3-CH2-CH2Cl + CH3-CHCl-CH3 + HCl Б) бромирование: CH3 CH3 │ │ СН3-СН2-СН-СН3 +Br2 –(свет)àСН3-СН2-С-СН3 + HBr │ Br Бромирование – более медленный и избирательный процесс. Избирательность бромирования: третичный > вторичный > первичный атом углерода. Механизм радикального замещения: Цепной свободнорадикальный. Свободный радикал R∙– это ОЧЕНЬ АКТИВНАЯ частица, несущая на себе один неспаренный электрон и стремящаяся образовать связь с каким-либо другим атомом. 1) Инициирование цепи (запуск): молекула хлора под действием кванта света разрывается на два радикала Cl·: 2) Развитие цепи: радикал хлора отрывает от алкана атом водорода. При этом образуется промежуточная частица - алкильный радикал, который в свою очередь отрывает атом хлора от молекулы Cl2. При этом вновь получается радикал хлора и процесс повторяется – идёт продолжение цепи: 3) Обрыв цепи: соединение двух радикалов в молекулу.
2) Нитрование (реакция М.И. Коновалова): Механизм реакции – также радикальный. Нагревание до 140°С с разбавленной (10%-ной) азотной кислотой: CH3 CH3 │ │ СН3-СН2-СН-СН3 + HNO3 à СН3-СН2-С-СН3 + H2O │ Избирательность нитрования: NO2 третичный > вторичный > первичный атом углерода.
3) Крекинг - превращения алканов под действием нагревания. а) Для алканов с длинными цепями при крекинге получается алкан и алкен. Причём при длине больше 5 атомов С получится смесь углеводородов разной длины. CH3–CH2–CH2–CH3 -400°Cà CH3-CH3 + CH2=CH2 б) Крекинг метана происходит двумя возможными путями: 1. длительное нагревание метана: CH4 -1500°Cà C+ 2H2 2. мгновенное нагревание до 1500 градусов и сразу охлаждение: 2CH4 -1500°CàH–C≡C–H + 3H2 ацетилен
4) Изомеризация – перестройка углеродного скелета с образованием других изомеров:при нагревании с катализатором AlCl3. СН3-СН2-СН2-СН3 -(100о, AlCl3)à CH3-CH-CH3 │ CH3
5) Окисление: 1) Горение: CH4 + 2O2 ⇆ CO2 + 2H2O C5H12 + 8O2 ⇆ 5CO2 + 6H2O 2) Каталитическое окисление: Метана: СН42 -(катализатор)à смесь СН3ОН, НСОН и НСООН Бутана: С4Н10 + О2 -(катализатор)à2 СН3СООН (уксусная кислота)
6) Дегидрирование и циклизация. 1) Короткие алканы дегидрируются в алкены или диены: С2Н6 –(кат., t)àC2H4 + H2 CH3-CH2-CH2-CH3 –(кат.Cr2O3, t)àбутадиен + Н2 2) В присутствии катализатора гексан и гептан превращаются в бензол и толуол соответственно. СН3-СН2-СН2-СН2-СН2-СН3 –(кат.Pt, t)à + 4 Н2

 

Получение:

1) Реакция Вюрца: действие металлического натрия на моногалогенопроизводные углеводородов: 2CH3–CH2Br + 2Naà CH3–CH2–CH2–CH3 +2NaBr Происходит удвоение углеродного скелета. Реакция подходит для получения симметричных алканов.
2) Декарбоксилирование солей карбоновых кислот(реакция Дюма): сплавление солей карбоновых кислот со щелочами. Так получают метан при нагревании ацетата натрия с гидроксидом натрия. CH3COONa + NaOH(сплавление)àCH4­­+ Na2CO3
1) 3) Электролиз растворов солей карбоновых кислот(реакция Кольбе): 2CH3COONa + 2H2O –(эл.ток)à 2СО2 + Н2 + С2Н6 + 2NaOH катод: идёт разрядка воды: 2Н2О + 2е à Н2 + 2ОН- анод: 2) разрядка аниона кислоты: 2СН3СОО- -2е à 2СО2 + СН3-СН3
4) Гидролиз карбида алюминия – получение метана. Al4C3 + 12H2Oà3CH4­ + 4Al(OH)3
5) Гидрирование непредельных или циклических углеводородов в присутствии катализаторов (платины, палладия, никеля). R–CH=CH–R’ + H2katà R–CH2–CH2–R’ (циклопропан) + H2Pdà CH3 –CH2 –CH3(пропан)
6) Алканы можно получить из нефти крекингом или фракционной перегонкой.

Циклоалканы - предельные циклические углеводороды.

Общая формула гомологического ряда CnH2n.

Циклопропан Циклобутан Циклопентан Циклогексан
Малые циклы Большие циклы

 

Строение циклоалканов.

Каждый атом углерода в циклоалканах находится в состоянии sp3-гибридизации и образует четыре σ-связи С-С и С-Н.

 

Углы между связями зависят от размера цикла. В малых циклах С3 и С4 углы между связями С-С сильно отличаются от тетраэдрического угла 109,5°, что создает в молекулах напряжение и обеспечивает их высокую реакционную способность.

σ-связи в циклопропане называют "банановыми". По свойствам они напоминают ПИ-связи. Поэтому молекулу циклопропана очень легко разорвать и поэтому он способен вступать в реакции присоединения (с разрывом цикла).

 

Циклобутан в пространстве имеет перегиб по линии, соединяющей 1 и 3 атом С в кольце:

Циклопентан имеет форму, которую называют «конверт»:

Большие циклы очень устойчивы и не склонны к разрыву. Так, молекула циклогексана не является плоским многоугольником и принимает различные конформации, имеющие названия «кресло» и «ванна»:

А — кресло б — ванна.

И в конформации кресла, и в конформации ванны связи вокруг каждого атома углерода имеют тетраэдрическое расположение. Отсюда — несравнимо большая устойчивость обычных циклов по сравнению с малыми циклами, отсюда — их возможность вступать в реакции замещения, но не присоединения.

Изомерия:

1. Структурная изомерия, связанная:
a) с числом углеродных атомов в кольце:

(этилциклопропан), (метилциклобутан);

b) с числом углеродных атомов в заместителях:

(1-метил-2-пропилциклопентан), (1,2-диэтилциклопентан)

c) с положением заместителя в кольце:

(1,1-диметилциклогексан), (1,2-диметилциклогексан)

 

2. Межклассовая изомерия: циклоалканы изомерны алкенам.

 

3. Геометрическая цис-транс-изомерия:

Например, в молекуле 1,2-диметилциклопропана две группы СН3 могут находиться по одну сторону от плоскости цикла (цис-изомер) или по разные стороны (транс-изомер):

цис-изомер транс-изомер

Получение.

1. Отщепление двух атомов галогена от дигалогеналканов:

2. При каталитическом гидрировании ароматических углеводородов образуются циклогексан или его производные: C6H6 + 3H2 -t°,р,Ni→ C6H12.

 

Химические свойства.

Малые циклы (циклопропан и циклобутан) из-за большой напряженности кольца (малые углы) легко разрываются, вступая в реакции присоединения.

1) Гидрирование. При каталитическом гидрировании трех-, четырех- и даже пятичленные циклы разрываются с образованием алканов.

(циклопропан) + H2 -120ºC,Nià CH3–CH2–CH3

(циклопентан)+ H2-300ºC,PdàCH3–CH2–CH2–CH2–CH3

Пятичленный цикл разрывается только при высоких температурах.

 

2) Галогенирование. Циклопропан и циклобутан разрываются, присоединяя атомы галогена.

+ Br2 à BrCH2–CH2–CH2Br (1,3- дибромпропан)

3)Гидрогалогенирование. Циклопропан и замещенные циклопропаны взаимодействуют с галогеноводородами с разрывом цикла.

В случае замещенных циклопропанов реакция идёт в соответствии с правилом Марковникова.

Другие циклоалканы с галогеноводородами не реагируют.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...