Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Радиоволновые методы и средства

Радиоволновой метод основан на зависимости прошедшего или отражённого радиоизлучения, от параметров и характеристик диэлектрических материалов (пластмасс, резины, стеклопластиков, термоизоляционных материалов, фанеры, зерна, песка и пр. материалов). В радиоволновом методе используется диапазон длин волн , который называется диапазоном сверх высоких частот. Электромагнитная волна представляет собой совокупность электрического Е и магнитного Н полей, распространяющихся в определённом направлении Z. В свободном пространстве электромагнитные волны поперечны, т.е. векторы Е и Н перпендикулярны направлению распространения.

 

Вектор Е определяет поляризацию электромагнитного поля (её амплитуду). Исходя из этого, волна может быть плоско поляризована (линейно поляризована), электрически поляризована, круговой поляризации (правой или левой поляризации, правая – по часовой стрелке, левая – против часовой стрелки). Напряжённость магнитного поля Н проверяется в её изменении по амплитуде в зависимости от магнитной проницаемости используемого материала. Н может меняться от нуля до максимального значения, что используется в методах электрического парамагнитного резонанса и в ядерных методах резонанса. Это позволяет исследовать слабые взаимодействия внутри вещества с применением этих методов.

Принципы построения радиоволновых

приборов неразрушающего контроля.

В радиоволновом методе используется диапазон длин волн от 1 до 1 мм, который называют диапазоном сверхвысоких частот (СВЧ). При прохождении сигнала через контролируемую среду, последняя влияет на его характеристики. Если контролируются диэлектрические материалы, то в качестве характеристик используют диэлектрическую постоянную и тангенс угла потерь ; при контроле полупроводниковых материалов оценивают диэлектрическую постоянную и магнитную проницаемость ; при контроле электропроводных материалов исследуют проводимость . Приборы радиоволнового контроля можно разделить на фазовые, амплитудно-фазовые, поляризационные, резонансные, спектральные, частотные, лучевые, преобразовательные. Все эти приборы основаны на использовании явлений отражения, прохождения, поглощения, преломления, поляризации и преобразования радиоволнового излучения. Для измерения степени влияния среды на сигнал применяются амплитудно-фазовые приборы. Схема прибора приведена на рисунке 1.

Приборы подобного типа содержат излучательную антенну 4 и приёмную антенну 6, источник генерации СВЧ1, вентиль 2, аттенюатор 3,7, с помощью которого можно ослабить излучение, детектор 8 и блок обработки и выдачи информации 9. После прохождения излучения через объект контроля 5 мощность сигнала будет оцениваться по формуле:

(1), где

-мощность радиоизлучения, прошедшего через объект контроля ;

- площадь излучающей антенны 4;

- мощность излучающей антенны 4;

- коэффициенты прохождения радиоволны на границе раздела двух сред исследуемого материала и среды в которой он находится; , где

- длина излучающей антенны в поперечном сечении;

- расстояние от кромки излучающей антенны до поверхности испытуемого изделия 5;

- расстояние до кромки приёмной антенны от поверхности проверяемого изделия после прохождения радиоизлучения;

- толщина проверяемого изделия;

- коэффициенты отражения при падении радиоизлучения на поверхность изделия и при его выходе с поверхности изделия; , где

- волновое число;

- длина волны радиоизлучения.

Из выражения 1 видно, что при заданной мощности можно определить толщину контролируемого объекта или физические параметры . Для исключения переотражений необходимо согласовать границы с приёмной и излучающей антенной, т.е. расстояния . Радиоволновые приборы могут быть построены на принципе приёма отраженного от дефекта сигнала. Схема прибора показана на рис.2.

 

Принцип работы подобных приборов состоит в следующем: сигнал СВЧ генератора 1 через вентиль 2 и узел разделения 3 подаётся на излучающую антенну 4, отражённый от объекта 6 сигнал поступает в антенну 5, детектируется в элементе 7 и идентифицируется в системе 8. Особенностью приборов, основанных на приёме отражённых сигналов, является наличие связи (напряжённости электромагнитного поля радиоизлучения) между излучающей и приёмными антеннами. Эта связь реализуется за счёт части излучения антенны 4 и является опорным сигналом, с которым суммируются отражённые сигналы . Совокупность всех компонентов сигнала носит интерференционный характер, зависящий от соотношения между амплитудой и фазой отражённого сигнала и сигнала связи . Вид интерференционной картины зависит от отражённого сигнала, несущего информацию о внутренней структуре контролируемого объекта, т.е. зависит от . Радиоволновые поляризационные приборы основаны на зависимости поляризации электромагнитной волны, т.е. от ориентации вектора Е в пространстве по мере распространения её в контролируемой среде. По виду поляризации (плоская, круговая, электрическая) можно судить о внутренней структуре материала. Обычно прибор настраивают так, что при отсутствии внутренних дефектов в объекте, сигнал в приёмной антенне равен нулю. При наличии дефекта или структурной неоднородности меняется плоскость или вид поляризации излучаемого сигнала, и в приёмной антенне появляется сигнал, несущий информацию о дефектах.

В радиоволновых резонансных приборах состояние контролируемого объекта определяется по воздействию среды на добротность, смещение резонансной частоты или на распределение поля в резонаторе. На рисунке 1 представлен цилиндрический резонатор в виде схемы:

- линии магнитного поля
Рис. 1

Обычно резонатор 1 циклической формы диаметра , возбуждается на волне . Испытуемый образец 2 диаметра помещается внутри резонатора. В этом случае имеет место смещение резонансной частоты. По величине смещения определяется однородность этого образца и его сплошность. В случае несплошности или какого-либо дефекта внутри испытуемого объекта смещение резонансной частоты увеличивается. Этим и определяется контроль испытуемого образца.

В случае (рис.1 б) возникают разнополяризованные радиоволны. Одни с правой поляризацией, другие – с левой. Если такой резонатор положить на образец, то при наличии дефектов в образце, произойдёт изменение в поляризации радиоволны, и появятся некоторые составляющие величины этой поляризации (на рисунке это показано, как ). Измеряя положение этого значения можно найти место расположения этого дефекта и его протяжённость.

 

Схема работы лучевых приборов

 

- толщина; - размер; - угол преломления Рис. 2

На рис.2а) показано прохождение радиолуча через образец. Обычно используется луч миллимитрового диапазона, и его прохождение подчиняется законам геометрической оптики. В итоге по величине отклонения определяют показатель преломления и этим находят характеристику среды. Если среда однородная, то луч преломляясь выходит с противоположной стороны изделия, если же среда неоднородная, то помимо преломления происходит и отражение радиолуча, как показано на рисунке 2б). В приборах этого типа фиксируется радиоизображение внутренних дефектов.

Радиоволновые толщиномеры.

Радиоволновые методы позволяют контролировать толщину диэлектрических материалов, слоёв диэлектриков на металле и металлических листах. Информация о толщине может содержаться в амплитуде, фазе, смещении резонансной линии и резонансной кривой. Наиболее важными параметрами объекта, влияющими на прошедший или отражённый сигнал является толщина и диэлектрическая проницаемость материала. Чем однороднее материал, тем точнее измеряется толщина. Коэффициенты отражения и прохождения радиоволны для плоского однородного слоя при нормальном падении представляют собой осциллирующие функции, убывающие при возрастании толщины и отношении , где - длина волны радиолуча.

Период этих функций определяется длиной волны и показателем преломления среды. А степень убывания – коэффициентом затухания волны. На рисунке 3 приведены графики коэффициентов отражения для двух диэлектриков.

Рис. 3

Ряд 1 – гипсобетон (); ряд 2 – оргстекло ()

Рис.4

 

Ряд 1 – среднее затухание ; ряд 2 – малое затухание ; ряд 3 – большое затухание ; - угол потерь.

Видно, что период осцилляции коэффициента отражения обратнопропорционален диэлектрической проницаемости. Однозначная связь между коэффициентом прохождения и толщиной имеет место при большом затухании. Появление неоднозначности при малом затухании затрудняет применение толщинометров, основанных на прохождении волны. В качестве примера рассмотрим толщиномер для измерения толщины прокатываемого металлического листа.

 

Толщиномер для измерения толщины

прокатываемого металлического листа.

1- узел для обработки сигналов и выдачи их на индикацию и управление

2- генератор СВЧ 10 -линза

3- тройник 11- измеряемый объект

4- вентиль 12- линза

5- согласующая нагрузка 13 – антенна приемная (рупор)

6- детекторная секция 14 – направленное отверстие

7- подстроенный закорачивающий плунжер 15 - закорачивающий плунжер

8- направленное отверстие 16 – детекторная секция

9- антенна излучающая (рупор) 17 – согласующая нагрузка

18 – вентиль

 

В приборах этого назначения имеет место зеркальное отражение электромагнитной волны от поверхности контролируемого объекта, при этом на самой поверхности устанавливается пучность тока и узел напряжения. При измерении толщины объекта меняется построенная картина поля, что отмечается прибором. Генерируемые сигналы СВЧ через тройник 3 и вентили 4 и 18 поступает на ответвление 8 и 14, а затем на рупорные антенны 9 и 13 с линзами 10 и 12. Сигналы, отражаясь от поверхности измеряемого объекта 11, образуют стоячие волны. Резонаторы отражённых волн настраивается в резонанс посредством короткозамкнутых плунжеров 7 и 15.

Рис.5

Радиоволновые влагомеры.

 

Методы измерения влажности материалов основаны на поглощении и рассеянии радиоволн молекулами воды в области СВЧ. Информативными параметрами являются амплитуда, фаза и угол поворота плоскости поляризации электромагнитной волны. Известно, что в области СВЧ имеет место резонансное поглощение. Кроме того диэлектрическая постоянная воды в указанной области частот меняется от 80 до 20, тогда как эта величина для других материалов лежит в пределах 2-9. Это обстоятельство позволяет использовать радиоволновый метод для устройства влагомеров разного назначения. На рисунке 6 приведены зависимости диэлектрических проницаемостей от частоты.

Ряд 1 – проницаемость , ряд 2 – проницаемость .

 

 

Рис. 6

 

Для измерения соединения влаги используется амплитудный влагомер, который основан на ослаблении мощности прошедшего через объект сигнала, его схема приведена на рисунке 2. В области слабосвязанной влаги коэффициент прохождения сигнала пропорционален содержанию воды.

Амплитудный влагомер.

1- генератор СВЧ 9 – устройство управления преобразованиями

2- вентиль 10 – устройство индикации

3- тройник волноводный 11 - детектор

4- антенна излучающая 12 - плунжер закороченный

5- антенна приёмная 13 – усилитель

6- преобразователь

7- плунжер закороченный

8- детектор

Амплитудно-фазовый влагомер.

 

1- Генератор СВЧ 5 – антенна приёмная

2- Переменные преобразователи 6 – устройство согласования нагрузки

3- Тройник 7 – тройник волноводный

4- Антенна излучающая 8 – индикатор

9 – усилитель 10 – детектор

Прибор работает на принципе сравнения сигнала, прошедшего через влажный объект, и сигнала прошедшего по волноводному тракту. В волноводном тройнике 7 сигналы сравнивают по амплитуде и фазе. Разностный сигнал после усилению индицируется в устройстве 8.

Радиоволновые дефектоскопы.

Эти приборы применяются для контроля трещин, воздушных включений, инородных включений, неоднородностей, дефектов склеивания и т.д. в диэлектрических материалах. Радиоволновые дефектоскопы строятся на принципе пропускания или отражения волны, которая несёт информацию о толщине слоёв и показателе преломления, т.е. о физических параметрах слоёв (плотность, пористость, влажность, состав и т.д.) на рисунке 9 в качестве примера приведены схема дефектоскопа с механическим сканированием.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...