Производительность и надежность промышленных сетей.
Модели сетевого взаимодействия устройств. Модель OSI - 1984 году Международной Организацией по Стандартизации (International Standard Organization, ISO) была разработана модель взаимодействия открытых систем (Open Systems Interconnection, OSI). Модель представляет собой международный стандарт для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей. Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический. (Подробнее про OSI в вопросе 48) Модель DOD (DOD — англ. department of defense — Министерство обороны США) — модель сетевого взаимодействия, разработанная Министерством обороны США Уровень приложений или прикладной уровень (англ. process/application; соответствует трём верхним уровням модели OSI (прикладному уровню, уровню представления и сеансовому уровню)). Включает протоколы: обрабатывающие данные пользователей, управляющие передачей данных между приложениями. Транспортный уровень (англ. transport; соответствует транспортному уровню модели OSI). Содержит протоколы, ответственные за контроль целостности передаваемых данных, установку и прекращение соединений. Межсетевой уровень (англ. internet; соответствует сетевому уровню модели OSI). Содержит протоколы, предназначенные для маршрутизации передаваемых данных.
Уровень сетевого доступа (англ. network access; соответствует двум нижним уровням модели OSI (физическому уровню и канальному уровню)). Содержит протоколы, предназначенные для физической передачи данных между устройствами сети.
Производительность и надежность промышленных сетей. Промышленной сетью называют комплекс оборудования и программного обеспечения, которые обеспечивают обмен информацией (коммуникацию) между несколькими устройствами. Промышленная сеть является основой для построения распределенных систем сбора данных и управления. Важной характеристикой промышленных сетей является надежность доставки данных.
Модель OSI. В 1984 году Международной Организацией по Стандартизации (International Standard Organization, ISO) была разработана модель взаимодействия открытых систем (Open Systems Interconnection, OSI). Модель представляет собой международный стандарт для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей. Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический. Уровни модели OSI Ниже дается краткая характеристика уровней модели: Физический уровень (Physical layer) определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов. Канальный уровень (Data Link layer) отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к обще линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
Сетевой уровень (Network layer) обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является целенаправленная передача данных конкретному получателю. Транспортный уровень (Transport layer) реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке. Сессионный (или сеансовый) уровень (Session layer) позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только определенным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии. Уровень представления (Presentation layer) осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе. Прикладной уровень (Application layer) предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п. 49. Повторители интерфейса и концентраторы.
Электрический сигнал, проходя по линии передачи, ослабляется вследствие потерь на омическом сопротивлении кабеля и изменяет свою форму по причине неоднородности линии и неточного ее согласования. Поэтому существует ограничение на предельную длину кабеля, которое зависит от типа интерфейса и скорости передачи. Повторитель (ретранслятор, репитер - Repeater) восстанавливает уровень и форму сигнала, а также позволяет согласовать ее в пределах каждого из фрагментов, ограниченных повторителями. Поэтому повторители используют для увеличения расстояния, на которое требуется передать сигнал, а также для увеличения нагрузочной способности (коэффициента разветвления) передатчика интерфейса. Повторители интерфейса обычно имеют (не всегда) гальваническую изоляцию, поэтому их можно использовать также для деления сети на гальванически изолированные сегменты с целью защиты от помех. Деление сети на гальванически изолированные фрагменты обеспечивает также электрическую защиту изолированных фрагментов от случайного попадания высокого напряжения в какой-либо фрагмент сети. При этом гальванически изолированные участки сети окажутся неповрежденными. Поскольку электромагнитная волна существует только в пределах одного фрагмента сети, а в соседний фрагмент передается только восстановленный сигнал, то повторители можно использовать и для выполнения ответвлений в сети с шинной топологией (рис. 2.5), поскольку длина ответвления от кабеля до повторителя всегда может быть сделана достаточно малой. При этом не возникает отражений, которые имеют место при выполнении ответвлений без повторителя. Повторитель использует только часть 1-го уровня модели OSI. Он не изменяет способа кодирования информации, не проверяет контрольные суммы, не восстанавливает потерянные биты, а только принимает электрические сигналы с помощью стандартного для выбранной сети приемника, восстанавливает их форму и передает дальше с помощью стандартного передатчика. Пример структуры повторителя интерфейса NL-485C фирмы НИЛ АП приведен на рис. 2.46. Он состоит из двух стандартных приемопередатчиков интерфейса, микроконтроллера и стабилизатора напряжения. Гальваническая изоляция интерфейсов друг от друга и от источника питания выполняется с помощью изолирующих преобразователей напряжения (DC-DC преобразователей) и оптронов. При появлении сигнала на одном из портов микроконтроллера он автоматически ретранслирует его на второй порт, переключая его в режим передачи. Поскольку сигналы передаются без изменения временных соотношений, скорость передачи на обоих портах автоматически получается одинаковой.
Преобразователи интерфейсов могут быть без гальванической изоляции, с изоляцией каждого интерфейса отдельно (как на рис. 2.46), и с изоляцией одного из двух интерфейсов. В последнем случае второй интерфейс имеет гальваническую связь с источником питания. Согласующие резисторы внутри повторителя могут присутствовать или нет и могут отключаться микропереключателем или джампером. Перед применением повторителя нужно убедится, имеются ли резисторы внутри корпуса преобразователя, или нужно подключить внешние резисторы к клеммам преобразователя. Вывод земли "GND" соединяется с экраном кабеля, но не с землей. Оплетка кабеля должна заземляется только в одной точке (подробнее см. раздел "Защита от помех").
Концентраторы (хабы) Концентратор устроен точно так, как повторитель интерфейсов (рис. 2.46), но имеет больше портов и, соответственно, устройств для гальванической изоляции. Часто гальваническую изоляцию между портами концентратора не делают, чтобы удешевить коммерческий продукт. Это оправдано, когда концентратор используется для создания сети сложной топологии на ограниченной площади. В сетях Ethernet при поступлении сигнала одновременно на два или более портов концентратора возникает коллизия. Поэтому Ethernet-концентраторы в настоящее время практически полностью вытеснены сетевыми коммутаторами, не имеющими указанной проблемы.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|