Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Транспортирование и укладка бетонной смеси

Выбор и обоснование метода производства работ, подбор способов транспортирования и укладки бетонной смеси в блоки бетонирования являются важным этапом проектирования. Подбор транспортных средств и механизмов необходимо осуществлять с учетом конкретных условий их применения (рельефа местности, размеров котлована и блока бетонирования, степени армирования, температуры окружающей среды, дальности транспортирования, интенсивности, продолжительности и очередности производства бетонных работ и др.) путем технико-экономического сравнения нескольких вариантов.

Транспортирование бетонной смеси включает в себя доставку ее от бетонного завода на объект строительства и подачу смеси непосредственно к месту укладки со всеми погрузками и выгрузками, а также распределение ее по блоку бетонирования.

Основная задача транспортной схемы - своевременно и надежно обеспечить непрерывное бетонирование блоков с расчетной интенсивностью.

Для транспортирования бетонной смеси в зависимости от ее первоначальной подвижности, скорости схватывания, применяемого цемента, дальности транспортирования, состояния дорог, времени нахождения в пути, числа перегрузок и температурно-влажностных условий перевозок могут применяться автобетоносмесители, автобетоновозы, автосамосвалы, бортовые машины и железнодорожные платформы с перевозкой бетонной смеси в бадьях, а также бетононасосы, ленточные транспортеры и вспомогательный транспорт.

Ориентировочно выбор транспортных средств можно производить по табл.2.9, 2.10, 2.11 /6,8/.

Таблица 2.9

Показатели для выбора горизонтального транспорта бетонной смеси

Вид транспорта Дальность транспортирования, км Интенсивность бетонных работ, м3 Показатель подвижности бетонной смеси, см Максимальные размеры фракций заполнителей
Автосамосвалы 0,3 - 30 >5 <8 без огранич.
Автобетоносмесители <80 <5 без огранич. "
Железнодорожный >0,3 >20 <8 "
Ленточные транспортеры <1 >15 <6 "
Бетононасоса и пневматический транспорт по трубам <0,25 >8 4-8 1/3 диаметра бетоновода
Кабель-краны 0,2 - 1 - <8  

 

Примечание: на Ингури ГЭС при подаче бетонной смеси кабель-кранами максимальный размер фракции ограничивался 80 мм по причине недопущения расслоения бетонной смеси при разгрузке.

 

Таблица 2.10

Предельные сроки транспортирования бетонной смеси

Температура бетонной смеси и наружного воздуха, град. Предельно допустимая продолжительность транспортирования, ч
5 - 10 1,5
10 - 15 1,25
15 - 20 0,75
20 - 25 0,5

Примечание: Время указано для бетонной смеси без добавок. В случае применения добавок, замедляющих начало схватывания, сроки транспортирования можно увеличить в 1,5 - 3 раза.

Таблица 2.11

Предельная дальность транспортирования бетонной смеси

Подвижность бетонной смеси,

см

Вид дорожного покрытия

Скорость транспорта,

км/ч

Расстояние, км

Автобетоносмесители

Автобетоновозы

Автосамосвалы Автобадьевозы

Режим транспортирования

А Б

В

Готовая смесь

1-3 4-6 7-9 10-14 Асфальт, асфальтобетон, бетон (жесткое) 30 Не ограничено до 120 100 80 60

до 100

80

60

45

до 45 30 20 15 до 30 20 15 10 до 25 15 10 8
1-3 4-6 7-9 10-14 Мягкие грунтовые улучшенные 15

Применение не рекомендуется

12 8 5,4 4,0 7,5 5,0 3,6 2,5 5 3 2 1,6
                   

 

Примечание: Режим А - включение барабана в пути за 20-30 мин до разгрузки (загружена сухая смесь). Режим Б - включение барабана после его наполнения (загружена смоченная смесь). Режим В - периодическое включение барабана во время возки (загружена смоченная смесь).

Расчет потребности средств порционного бетоновозного транспорта производится исходя из часового потока бетонной смеси для наиболее напряженного периода бетонных работ.

Эксплуатационная производительность автотранспорта определяется по формуле:

, м3/ч,

где 60 - количество минут в часе;

q – объем бетонной смеси в кузове автосамосвала, м3;

m - число кузовов (m= 1) или бадей;

Кв=0,8-0,9- коэффициент использования автотранспорта во времени;

Т - продолжительность одного цикла (рейса), мин

Т =t1+ t2+ t3 +t4+ t5;

t1 - продолжительность подачи автосамосвала к раздаточному бункеру бетонного завода (t1  = 1-2 мин);

t2 - продолжительность погрузки:

или t2 = tз nз,

nз - число замесов, погружаемых на одну машину (при nз = 2-3 t2= 4 - 5 мин; при nз = 4-5 t2 =6-8 мин);

tз - время приготовления одного замеса;

t3, t5 - продолжительность рейса с грузом и холостой ход:

,

L - дальность транспортирования;

V - средняя скорость движения автосамосвала с грузом и без груза (табл.2.12);

t4 - продолжительность разгрузки (t4 = 4 - 6 минут или равно продолжительности 1 цикла крана).

Полезная емкость бетоновоза, самосвала, бадьевоза должна быть кратна объему замеса бетоносмесителя завода цикличного действия или бункера-накопителя завода непрерывного действия, то есть чтобы за один рейс он мог принять nз =  замесов, где  - грузоподъемность транспортного средства,  - масса одного замеса, и nз составляло целое число. Марка автомобиля подбирается по справочникам, например, /11/. За один рейс можно перевозить до 8 м3 бетона.                                               

Количество автомобилей определяется по формуле ,

Таблица 2.12

Скорости пробега машин

 

Тип пробега

 

 

Тип дорожного покрытия

V, км/ч

автосамосвал автобетоновоз автобетоносмеситель

Груженый

Жесткое

Мягкое

30 30 25
15 15 15
Порожний Жесткое 40 40 35
  Мягкое 20 20 18

 

где  - часовая производительность бетонного завода.

При бетонировании автосамосвалами с инвентарных и передвижных мостиков интенсивность укладки с одного моста определяется

, м3/ч,

где q - объем бетонной смеси, перевозимой за 1рейс;

 - время, затраченное на въезд автомобиля на мостик, разгрузку и съезд с мостика, мин.

Автомобильный транспорт часто применяется в комплекте с кранами. В гидротехническом строительстве используют башенные краны типа КБГС (кран башенный гидротехнического строительства), стреловые гусеничные краны, кабельные краны, реже пневмоколесные, автомобильные, общестроительные и монтажные башенные краны типа БК, портальные, стационарные мачтово-стреловые.

Подъемные краны выбирают исходя из требуемых грузоподъемности, вылета стрелы и высоты подъема. Для этого используются крановые характеристики /11/.

Грузоподъемность крана G должна соответствовать массе бадьи с бетонной смесью.

Бадьи могут быть опрокидные, неопрокидные и поворотные. Их объем - от 0,3 до 8 м3. Выбирают их таким образом, чтобы весь привозимый машиной за 1 рейс бетон был принят в одну бадью. Таким образом, грузоподъемность крана G = Gб +nзGвых, где Gб - масса бадьи.

Допускается разгрузка бетона из кузова самосвала сразу в две бадьи, поставленные вплотную друг к другу.

Требуемая высота подъема Н = Нс + h1 + h2.

Требуемый вылет стрелы .

Здесь Нс - высота бетонируемого сооружения выше уровня стояния крана, h1 - высота бадьи с подъемными приспособлениями, h2 = I - 2 м - запас чад верхней частью бетонируемого сооружения по условиям производства работ и техники безопасности, Вс - ширина зоны бетонируемого сооружения или всего сооружения, в1 - ширина ходовой части крана, в2 - запас между краном и бетонируемым сооружением, определяется в зависимости от конфигурации котлована, габаритных размеров хвостовой части крана, положения стрелы, условий безопасности проведения работ.

По приведенным параметрам из справочников /11/ определяется тип и марка крана. Его производительность можно найти

,

где q - полезный объем или масса перемещаемого груза, м3 или т;

Т - продолжительность цикла, мин (по табл. 2.1З);

кв =0,7 – 0,9 - коэффициент использования крана во времени.

 

Таблица 2.1З

Продолжительность циклов работы кранов

 

Показатели

Грузоподъемность, т

< 1,5 1,5 - 5 > 5
Продолжительность цикла, мин Количество циклов в час               24 - 15   14 - 10    10-6

2,5 – 4

4 - 6 6-10
         

 

Подробные расчеты кабель-кранов, ленточных конвейеров, бетононасосов, пневмотранспорта по трубам приведены в /1,6/.

Схемы возведения сооружений устанавливаются в зависимости от типа и конструкций сооружений, топографии и геологии строительной площадки, типа ведущих бетоноукладочных механизмов, организации транспортного движения в котловане.

Обычно в зависимости от типа основных бетоноукладочных механизмов и характера их размещения все способы возведения бетонных сооружений объединяются в следующие схемы /I/:

с размещением бетоноукладочных кранов на отметках дна котлована;

с размещением бетоноукладочных кранов на бетоновозных эстакадах;

с размещением бетоноукладочных кранов непосредственно на сооружении;

с использованием кабельных кранов;

с использованием непрерывно-поточных технологических схем;

с использованием бескранового послойного способа укладки бетонной смеси.

Схемы могут применяться в комбинации друг с другом. При этом необходимо выбрать тип основного оборудования, определить конструкции эстакад, мостиков и других вспомогательных устройств для подачи бетонной смеси в блоки сооружений. Необходимо определить конструкции опор и допустимость их оставления в бетоне сооружений. При использовании серийного оборудования необходимо компоновать наиболее рациональные комплекты (транспорт - бадья - кран), у которых производительность и грузоподъемность хорошо согласуются друг с другом и соответствуют расчетной интенсивности бетонирования.

Бетоноукладочные краны по возможности не должны использоваться на операциях по установке опалубки, арматуры и т.д. Для этого надо использовать вспомогательные краны.

Необходимое для обеспечения выполнения работ по бетонированию сооружения количество кранов и другого вспомогательного оборудования можно определять как частное от деления расчетной интенсивности Р ведения работ (часовой) на эксплуатационную производительность П механизма: N = . Этого количества машин, безусловно, не хватит для всего комплекса работ, так как здесь не учитываются потери времени на праздники, ремонты, вынужденные простои, поэтому на весь комплекс бетонных работ, включая подачу в блоки бетонирования бетонной смеси, монтаж арматуры, опалубки и т.д., определяют исходя из месячной интенсивности бетонных работ в летний период пикового года Рмес, соответствующей   /I/,

n = Рмеск.б +Q/Пк.м,

где Q = Рмесd - масса арматуры и опалубки, требуемая для  в тоннах;

d - масса арматуры и опалубки на I м3 укладываемого бетона, т/м3.                                    

При предварительных расчетах производительность можно принимать по табл.2.14 для различных кранов.          

При выборе основных видов бетоноукладочных средств есть необходимость рассмотреть несколько конкурирующих вариантов. За оптимальный принимают вариант с минимальными приведенными затратами. При этом необходимо выполнить более детальные расчеты, где учитываются конкретные размеры сооружений и конкретная величина перемещения грузов по горизонтали я вертикали.

Таблица 2.14

Производительность кранов по бетону Пк.б и по металлу и опалубке Пк.м

 

Типы кранов

Производительности кранов

Пк.б,тыс.м3/мес. Пк.м.тыс.т/мвс
Гусеничные 5-7 4 - 5
Портально-стреловые 6-8 5-6
Башенные:    КБПМ50    КБГС-1000   8-9 25 6 18 - 20
Кабельные 20 15

 

Укладке бетонной смеси предшествует подготовка блока или секции бетонирования. Укладка бетонной смеси включает в себя подачу бетона в блок бетонирования, прием, разравнивание и уплотнение бетонной смеси, уход за свежеуложенным бетоном.

В расчетно-пояснительной записке необходимо описать подготовку блока к бетонированию: описать подготовку мягкого (скального) основания и других поверхностей блоков бетонирования, различая случаи, когда бетонируются блоки первого яруса (на мягком или скальном основании) или же на более высоких отметках; установку (монтаж) опалубки и арматурных конструкций, закладных частей; процент армирования, шаг армирования, толщину защитного слоя и т.д. При необходимости для этих работ подбираются краны. Надо учесть и принять решение» что устанавливается раньше - опалубка или арматура. При этом должны быть выполнены допуски по обеспечению защитного слоя бетона и неровностей на поверхности бетона. Работы по установке опалубки и арматуры могут производиться по приобретении ранее уложенным бетоном прочности не менее 2,5 МПа.

Подача бетона производится описанными выше порционными или непрерывными способами.

Укладка бетонной смеси может производиться (рис.2.1):

а) Последовательными горизонтальными слоями. При этом наименьшая интенсивность бетонирования

,

где L - длина блока, м, в - ширина блока, м, h - толщина слоев бетонной смеси в уплотненном состоянии, k =1,2 -1,5 - коэффициент неравномерности подачи бетонной смеси, t - предельно допустимое время перекрытия слоев, ч (табл.2.8). Эта схема является основной при бетонировании железобетонных конструкций, включая и тонкостенные.

б) По ступенчатой схеме бетонирования с образованием 2-х 3-х, слойных блоков. Она применяется при возведении массивных неармированных и малоармированных сооружений длинными блоками. Предельно допустимая наименьшая интенсивность бетонирования при этом

,

где l - ширина ступени, м, n - число слоев бетонной смеси. При механизированной укладке бетона l = 3 - 5 м, n =2.

в) Однослойным бетонированием. Применяется при возведении массивных неармированных и малоармированных сооружений блоками большой площади. Предельно допускаемая наименьшая интенсивность бетонирования при этой схеме

.

где а - ширина защитно-пригрузочной полосы, м (для вирированного бетона 2-4 м, для укатанного бетона 2-3 м), В - размер стороны блока, вдоль которой ведется укладка бетонной смеси, м. h -толщина слоя, равная высоте блока, м.

Уплотнение бетонной смеси может производиться различными способами в зависимости от схемы укладки.

При укладке по первой схеме уплотнение ведется ручными вибраторами или пакетами вибраторов, навешанных на манипуляторы или краны.

По второй схеме разравнивание и уплотнение бетонной смеси ведется пакетами вибраторов, навешанных на манипуляторы или краны.

По третьей схеме разравнивание и уплотнение бетонной смеси ведется раздельно: разравнивание - бульдозерами, уплотнение - пакетами вибраторов, навешанных на электротракторы или манипуляторы. При применении укатанного бетона уплотнение бетонной смеси производится катками, виброкатками или тяжелыми груженными автомашинами с удельным давлением не менее 0,5 МПа.

При укладке с помощью ручных вибраторов толщина слоя не должна превышать h =0,5 м. Вибратор должен заглубляться в ранее уложенный бетон не менее чем на 5-10 см. В стесненных местах массивных блоков и тонкостенных конструкциях можно увеличивать величину h до 75 см. При этом шаг перестановки вибраторов L не должен превышать 0,5 радиуса его действия r. В общем же случае L=r , но в каждом случае r необходимо уточнять. Данные для предварительных расчетов можно брать в справочниках /6,11/.

Производительность глубинного вибратора

,

где tв = 20-40 с - время вибрирования на одной рабочей позиции,

tn = 10-15 с - время перестановки вибратора с одной рабочей позиции на другую, kв = 0,75 - коэффициент использования рабочего времени.

Количество вибраторов в блоке определяется

,

где р - часовая интенсивность бетонирования блока, м3/ч, k = 0,7-0,75 - коэффициент, учитывающий простои вибратора в процессе переноса с позиции на позицию и во время отдыха бетонщиков.

Общее количество вибраторов для строительства

,

где Q - объем бетонных работ на строительстве, м3, Qв= tв Пв объем бетона, который сможет уплотнить один вибратор до его полного износа, tв = 500-1000 ч.

Разравнивание бетонной смеси с применением электрических тракторов ведется при подаче смеси порциями 4-6 м3.

Уплотнение смеси с помощью тракторов рекомендуется производить методом непрерывного протягивания однорядного пакета вибраторов в слое со средней скоростью 0,75-1,25 м/мин. Толщина слоя выбирается из технических характеристик вибраторов /1, 11/.

В качестве ориентировочных данных для определения необходимого числа механизмов можно использовать данные, приведенные в /6/. При этом необходимо учитывать шаг расстановки арматуры. Требования к размещению арматуры и выбору уплотняющего оборудования указаны там же /6/.

Разравнивание бетонной смеси при бетонировании откосов не круче 1:2,5 можно производить при помощи бульдозеров. При этом толщина плит не менее 20 см.

При возведении массивного сооружения из жестких малоцементных бетонных смесей разравнивание доставленной в автосамосвалах бетонной смеси производится бульдозерами, а уплотнение - виброкатками за несколько проходок. Толщина укатываемого слоя обычно не превышает 0,5 м. При этом наружные грани плотины (толщиной 2-3 м) для обеспечения повышенной водонепроницаемости бетонируются по обычной технологии с созданием монолитных бетонных блоков. Формирование наружных граней может осуществляться также бетонными сборными блоками.

После укладки бетона необходимо предохранять его как от излишнего разогрева, так и от замерзания, испарения влаги, влияния солнечной радиации и т.д. Требуется наметить комплекс мероприятий, которые бы обеспечили за время набора бетоном прочности требуемые нормальные условия твердения во все сезоны.

При назначении технологических мероприятий необходимо определить возникающие в кладке напряжения, величина которых зависит от перепада между максимальной температурой в блоке в период экзотермического разогрева и конечной температурой остывания блока в эксплуатационный период /14/. Если возникающие напряжения будут недопустимы, то определяется необходимое снижение температуры в блоке, которое должно быть обеспечено за счет применения различных технологических мероприятий /1,13, 6/.

Рис. 2.1. Способы укладки бетонной смеси:

а) последовательными горизонтальными слоями;

б) схема ступенчатого бетонирования;

в) схема однословного бетонирования

Проектирование опалубки

Проектирование опалубки включает в себя выбор и обоснование типов и размеров (типоразмеров) опалубки в соответствии с размерами бетонируемой конструкций и блоков, установление расчетных нагрузок и статический расчет элементов опалубки.

На первом этапе выбор типа опалубки с учетом типа и размеров бетонируемой конструкции, а также способа производства работ можно сделать на основании табл. 2.15 /6/.

Таблица 2.15

Область применения различных типов опалубки

Тип оплубки Характеристика Рекомендуемая область применения
Подъемно-переставная (консольная) Деревянная или с металлическими балками и фермами заводского изготовления, с возможностью оставления утепления на поверхности бетона   Бетонируемые блоки гравитационных, арочных и контрфорсных плотин
Несъемная  а) Железобетонные плиты с гидроизоляцией или теплоизоляцией Напорные грани сооружений в подводной зоне
  б) Металлическая облицовка Водоводы, спиральные камеры и др.
  в) Бетонные балки Надводная зона сооружений
  г) Железобетонные плиты с арматурой для цементации швов Межблочные цементируемые швы в плотинах
  д) Металлическая сетка Межблочные швы армированных сооружений
  е) Железобетонные плиты, балки и армобалки Наружные поверхности стенок, бычков, опалубка галерей, перекрытий над отсасывающими трубами и др.
  ж) Пазовые конструкции, металлические и комбинированные с использованием железобетонных плит Пазы гидромеханического оборудования
  з) Деревянная с утеплителем Напорные грани сооружений
Блочная (шатровая) Опалубочные щиты, прикрепленные к торцам шатров над бетонируемыми блоками Массивные сооружения типа плотин
Разборно-переставная крупнощитовая Деревянная, металлическая одно- или многоярусная Сооружения типа подпорных и раздельных стенок, голов и камер шлюзов, водосливных граней, подводных и надводных частей зданий ГЭС и др.
Скользящая Опалубочные щиты, закрепленные на рамах, перемещаемых домкратами Конструкции постоянного сечения (стены, резервуары, водоводы, трубопроводы и др.)
Горизонтально перемещаемая Опалубочные щиты, в том числе криволинейного очертания, закрепленные на пространственном каркасе и перемещаемые вдоль возводимого сооружения на тележке Туннельные обделки, водоводы, резервуары, подпорные стенки и др.
Съемная Несерийная опалубка из досок фанеры или других материалов, элементы которой определяются особенностями бетонируемых конструкций и условиями производства работ Индивидуальные и уникальные монолитные конструкции; доборные опалубочные элементы

 

Для проектирования опалубки необходимы следующие исходные данные:

запроектированные классы гидротехнического бетона и технологические характеристики бетонной смеси (плотность, консистенция, сроки начала и конца схватывания);

мощность (производительность) бетонного завода;

разрезка бетонных сооружений на секции и блоки бетонирования с описанием их типоразмеров;

расчетная интенсивность бетонирования в высоту;

способы подач, бетонной смеси в блок бетонирования;

средства уплотнения бетонной смеси;

производственные нагрузки на опалубку;

условия вызревания бетона в зимнее и летнее время.

Статический расчет опалубки включает в себя /17/:

расчет обшивки опалубки (определение ее толщины);

определение расстояния между ребрами жесткости;

расчет сечения ребер жесткости;

определение расстояния между прогонами;

расчет сечений верхнего и нижнего прогонов;

определение расстояния между тяжами;

расчет сечений тяжей, анкеров и болтов;

расчет других несущих и поддерживающих конструкций и креплений опалубки.

По результатам расчетов выполняется чертеж щита опалубки и составляется ведомость элементов опалубки, из которых собирается щит /17/.

Требуемое количество опалубки для нужд строительства определяется V=V1+V2, где V1, - объем собственно опалубки, V2 -объем поддерживающих конструкций.

V1=j a F Р (м3 для деревянной опалубки или т для металлической), где j - коэффициент оборачиваемости опалубки, определяется по табл. 2.I6; a - коэффициент перекрытия щитами опалубливаемых поверхностей (для деревянной опалубки a = 1,1; для металлической a = 1,05; для железобетонной a = 1,0); F = QM -площадь опалубливаемой поверхности, м2; Q - объем бетонных работ, м3; М=Fбл/qбл - модуль опалубливаемой поверхности, м- 1, Fбл - площадь блока, м2; qбл - объем блока, м3; Р - количество материала на 1 м2 опалубки (для деревянной Р = 0,1- 0,15 м3, для металлической Р = 0,05-0,08 т, для железобетонной Р =0,06 - 0.08 м3).

Таблица 2.16

Коэффициент оборачиваемости опалубки

Оборачиваемость опалубки

Деревянная

Металлическая

Железобетонная

стационарная щитовая
I 1 1 1 1
2 0,6 0,57 0,5 -
3 - 0,43 0,34 -
4 - 0,36 0,25 -
5 - 0,32 0,2 -
6 - 0,29 0,17 -
7 - 0,27 0,16 -
20 - - 0,1 -

 

К полученному объему V1 опалубки следует   прибавить объем поддерживающих конструкций в количестве:

при бетонировании сложных конструкций      - 20 %;

при бетонировании несущих конструкций                  - 15 %;

при бетонировании массивных стен     - 10 %,

то есть V2= (0,1 - 0,2) V1.

Производственная мощность опалубочной мастерской Р0    , тыс. м2/год, определяется

Р0      = Ргод pk,

 где Ргод - интенсивность бетонных работ в пиковый год, м3/год;

р - расход опалубки на 1 м3 бетона, м23, принимаемый: для гидроузлов с массивной бетонной плотиной - 0,3, в других случаях - 0,5; к - 1,2 - коэффициент неравномерности работы мастерской.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...