Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Возможное потепление климата (парниковый эффект)




 

Пропускание атмосферы в ИК диапазоне. Ослабление потока электромагнитного излучения в какой либо среде толщиной x в общем виде определяется по формуле

,

где t - линейный коэффициент ослабления, равный сумме коэффициентов поглощения и рассеяния.

Пары воды, молекулы углекислого газа, озона и другие примеси, содержащиеся в атмосфере, селективно поглощают ИК излучение. Особенно интенсивно поглощается ИК излучение парами воды. Например, слой воды толщиной в несколько см является непрозрачным для ИК излучения с длиной волны более 1 мкм. Поэтому слой воды можно использовать в качестве теплозащитного экрана. Молекулы азота, кислорода ослабляют ИК излучение за счет молекулярного (рэлеевского) рассеяния, которое максимально интенсивно в видимом и УФ диапазонах, т.к. коэффициент рэлеевского рассеяния пропорционален l-4. Именно рэлеевским рассеянием объясняется голубой цвет неба, поскольку излучение фиолетово-голубого конца спектра видимого излучения рассеивается значительно интенсивнее, чем другие длины волн видимого диапазона.

Рассеяние и поглощение ИК излучения аэрозолями зависит от размера и химического состава частиц, их концентрации, длины волны излучения и других факторов. В результате всех этих процессов ИК излучение на пути сквозь атмосферу к земной поверхности ослабляется.

Изучение свойств земной атмосферы с точки зрения ее прозрачности в ИК диапазоне, равно как и в видимом и УФ диапазонах, имеет большое значение не только для радиационного и теплового баланса между падающим на Землю солнечным излучением и ИК излучением, испускаемым Землей в космос, но и для связи, локации, медицины, экологии, метеорологии, биофизики и т.д.

Земная атмосфера слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения, как было показано выше, поглощается или рассеивается атмосферой, Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей. Рассеяние же обусловлено процессами взаимодействия излучения с атомами и молекулами газов и аэрозольными частицами. Прямая и рассеянная компоненты солнечного излучения, достигая земной поверхности, частично поглощаются ею, а часть излучения отражается от земной поверхности в зависимости от характера ее поверхности. Отражательная способность тел характеризуется величиной альбедо (отношение мощности отраженного излучения к мощности падающего потока). Например, поверхность, покрытая льдом, способна отразить до 75% падающего излучения, песок - примерно 30%, травяной покров - около 10%, а поверхность воды - примерно 2%.

При поглощении падающего солнечного излучения земная поверхность нагревается и становится источником длинноволнового излучения, направленного от земной поверхности в космос. Разность между КВ излучением, поглощенным земной поверхностью, и эффективным излучением с поверхности земли называют радиационным балансом. Атмосфера, со своей стороны, также является источником ДВ излучения, направленного к земле (т.н. противоизлучение атмосферы). При этом возникает теплообмен между земной поверхностью и атмосферой.

Интенсивность солнечного излучения, поглощаемого земной поверхностью и атмосферой, в сумме составляет 237 Вт/м2 , из этого количества 157 Вт/м2 поглощается земной поверхностью, а 80 Вт/м2 - атмосферой. Радиационный баланс земной поверхности составляет 105 Вт/м2, а эффективное излучение с нее равно разности поглощенной радиации и радиационного баланса и составляет 52 Вт/м2. Энергия радиационного баланса затрачивается на турбулентный теплообмен земли с атмосферой (17 Вт/м2) и на процесс испарения воды (88 Вт/м2).

Главной особенностью радиационного режима атмосферы является парниковый эффект, который заключается в том, что КВ радиация большей частью доходит до земной поверхности, вызывая ее нагрев, а ДВ излучение от Земли задерживается атмосферой, при этом уменьшается теплоотдача Земли в космос. Увеличение процентного содержания CO 2 , паров воды, аэрозолей и т.п. усиливает парниковый эффект, что может приводить к росту средней температуры нижнего слоя атмосферы и потеплению климата.

В настоящее время наблюдаемое изменение климата, которое выражается в постепенном повышении среднегодовой температуры, начиная со второй половины XX века, большинство ученых связывает с накоплением в атмосфере так называемых "парниковых газов" - диоксида углерода CO 2 , метана CH 4 , хлорфторуглеродов (фреонов), озона O 3 , оксидов азота и др.

В связи с сжиганием все большего количества ископаемого топлива (нефти, газа, угля и др.; ежегодно более 9 млрд. т условного топлива) концентрация CO 2 в атмосфере постоянно увеличивается. За счет выбросов в атмосферу при промышленном производстве и в быту растет содержание в атмосфере фреонов. На 1 - 1,5% в год увеличивается содержание метана (выбросы из подземных горных выработок, сжигание биомассы, выделения крупным рогатым скотом и др.). В меньшей мере растет содержание в атмосфере оксидов азота (на 0,3% ежегодно).

Расчеты некоторых ученых показали, что в 2005 году среднегодовая температура будет на 1,3°С выше, чем в 1950 - 1980 гг. В докладе международной группы экспертов по проблемам климатических изменений утверждается, что к 2100 г. среднегодовая температура на Земле увеличится на 2 - 4 градуса. В случае если это произойдет, возможно повышение уровня Мирового океана вследствие таяния полярных льдов, сокращения площадей оледенения в горных массивах и т.д. Моделируя экологические последствия повышения уровня океана всего лишь на 0,5 - 2 м к концу XXI века, ученые показали, что это неизбежно приведет к нарушению климатического равновесия, затоплению приморских равнин в более чем 30 странах, заболачиванию обширных территорий и др.

Следует заметить, что некоторые ученые видят в предполагаемом глобальном потеплении климата и положительные экологические последствия. Повышение концентрации углекислого газа в атмосфере и связанное с этим увеличение интенсивности фотосинтеза, а также возрастание влажности, по их мнению, могут привести к увеличению продуктивности, как естественных фитоценозов, так и агроценозов.

По вопросу о степени влияния парниковых газов на глобальное потепление климата также нет единства во мнениях. Ряд ученых считают, что наблюдающееся в последнее столетие потепление климата на 0,3 - 0,6°С может быть обусловлено преимущественно природной изменчивостью ряда климатических факторов.

На международной конференции в Торонто (Канада) в 1985 году перед энергетикой всего мира была поставлена задача сократить к 2005 году на 20% промышленные выбросы углерода в атмосферу. Но очевидно, что ощутимый экологический эффект может быть получен лишь при сочетании этих мер с глобальным направлением экологической политики: максимально возможным сохранением равновесия во всех сообществах организмов, в природных экосистемах и во всей биосфере в целом.

 

 

Нарушение озонового слоя

 

Озон представляет собой видоизменение молекулы кислорода и состоит из трех атомов (O 3). При нормальных условиях озон в небольших концентрациях обладает характерным запахом (свежести) и разлагается медленно. При больших концентрациях озон обладает синеватым цветом, резким запахом и легко взрывается.

В атмосферном воздухе озон образуется при электрических разрядах или при облучении воздуха ультрафиолетовым (УФ) излучением. Поэтому образование озона происходит во время грозы, а в верхних слоях атмосферы - под воздействием УФ излучения в присутствии примесей (например, азота). Обратимая реакция образования озона имеет вид:

 

3 O 2 + 285 кДж «2 O 3 .

 

Молекулы озона неустойчивы и превращаются обратно в молекулы кислорода с выделением энергии.

Окислительные свойства озона значительно выше, чем у кислорода. Озон окисляет все металлы, кроме золота и металлов платиновой группы. Наличие озона в газовой смеси устанавливают с помощью контрольной реакции:

 

.

 

Озон чрезвычайно ядовит, предельно допустимая концентрация его в воздухе составляет 10-5 %.

Озон, содержащийся в атмосфере, играет исключительно важную роль как с точки зрения процессов поглощения УФ составляющей солнечной радиации, тем самым выполняя защитную функцию для биосферы, так и с точки зрения регуляции температурного режима атмосферы.

Насыщенность атмосферы озоном постоянно меняется в любой части планеты, достигая максимума весной в приполярной области. Впервые истощение озонового слоя привлекло внимание в 1985 году, когда над Антарктидой было обнаружено понижение на 50% содержания озона, получившее название "озоновой дыры". С тех пор результаты измерений подтверждают повсеместное уменьшение озонового слоя практически на всей планете. Так, в России за последние 10 лет концентрация озона в озоновом слое снизилась на 4 - 6% в зимнее время и на 3% - в летнее. Снижение концентрации озона ослабляет способность атмосферы поглощать жесткое ультрафиолетовое излучение.

К ультрафиолетовому (УФ) излучению относятся электромагнитные волны с длинами волн от 380 нм до 10 нм (100 ангстрем). Этот диапазон электромагнитного спектра условно делят на ближнюю (380 - 200 нм) и далекую (200 - 10 нм) области. При переходах электронов между энергетическими уровнями в атомах, ионах и молекулах возникает линейчатый спектр УФ излучения. Непрерывный спектр УФ излучения возникает в результате рекомбинации или при торможении электронов.

В УФ диапазоне возрастает коэффициент поглощения многих веществ, что означает уменьшение их прозрачности в данном диапазоне по сравнению с видимым диапазоном. При l < 300 нм большинство сортов стекла становятся непрозрачными, за исключением таких материалов, как кварц, сапфир, фториды магния и лития и др. Например, LiF обладает наиболее далекой границей прозрачности, вплоть до l=100 нм. Среди газов наибольшей прозрачностью характеризуются инертные газы. Так, гелий прозрачен вплоть до l=50 нм.

При уменьшении длины волны в УФ диапазоне уменьшается и коэффициент отражения многих материалов. При взаимодействии УФ излучения с веществом происходят, в основном, процессы возбуждения или ионизации атомов, диссоциации молекул и т.д.

Основным источником УФ излучения естественного происхождения является Солнце. Из всего спектра УФ излучения Солнца только небольшая длинноволновая часть (l > 290 нм) достигает земной поверхности. Остальная часть, в особенности, коротковолновая, поглощается атмосферой. Основными поглотителями УФ излучения в атмосфере являются озон, кислород, азот, водород и другие компоненты атмосферы.

Значительная часть энергии УФ излучения Солнца в диапазонах длин волн 140 - 170 нм и 200 - 240 нм поглощается на высотах 80 - 100 км. Излучение с l < 100 нм вызывает ионизацию верхних слоев атмосферы, что приводит к ее разогреву.

В основе биологического действия УФ излучения лежат фотохимические процессы в биологических макромолекулах, происходящие в организмах при поглощении падающего излучения верхними слоями тканей растений или кожи животных и человека. Живые организмы уязвимы для УФ излучения, т.к. энергии одного кванта УФ диапазона достаточно для разрушения химических связей в большинстве органических молекул. В зависимости от интенсивности и длины волны УФ излучение действует на живые организмы двояко.

Лечебное действие. Малые дозы УФ излучения оказывают благотворное влияние на человека и животных, способствуя образованию в организме витаминов группы D. Действие электромагнитного излучения на человеческий организм определяется его интенсивностью, временем облучения, глубиной проникновения излучения в зависимости от длины волны. Для УФ излучения имеет место минимальная глубина проникновения по сравнению с излучением видимого диапазона и ИК. При воздействии ультрафиолетового излучения спустя 2 - 8 часов проявляется эффект покраснения кожи - эритема. Максимальным эритемным действием обладает УФ излучение с длинами волн 297 - 256 нм. Через 3 - 4 дня эритема переходит в защитную пигментацию (загар) кожи. УФ излучение применяется для компенсации ультрафиолетовой недостаточности (в районах Севера), как болеутоляющее и противовоспалительное средство (при невритах, радикулитах, бронхитах, ОРЗ и др.), для увеличения сопротивляемости организма различным инфекциям и т.п.

Вредное воздействие УФ излучения. Из-за большой энергии квантов УФ излучения и, соответственно, их способности вызывать деструкцию молекулярных и межмолекулярных связей, а также непосредственно влиять на ткани с образованием радикалов, УФ излучение представляет серьезную опасность для живых организмов. Большие дозы УФ излучения могут вызывать ожоги кожи и канцерогенные реакции, повреждения глаз и другие нежелательные процессы. Кванты УФ диапазона непосредственно влияют на синтез пигментов, активность ферментов и гормонов, интенсивность процессов фотосинтеза и т.п.

УФ излучение с длинами волн 240 - 280 нм особенно эффективно оказывает летальное и мутагенное воздействие на живые клетки, т.к. этот диапазон УФ излучения совпадает со спектром поглощения нуклеиновых кислот (ДНК, РНК). При поглощении квантов УФ диапазона происходят химические изменения ДНК, препятствующие нормальному удвоению ДНК в процессе клеточного деления. Это приводит к гибели клетки или изменению ее наследственных свойств (мутации). Кроме того, под действием УФ излучения возможно повреждение клеточных мембран.

Большинство живых клеток обладает способностью к восстановлению после повреждений, вызванных УФ излучением. Однако такие последствия, как мутации или повреждения клеточных мембран приводят к нарушению процессов синтеза белков, изменению содержания ферментов в цитоплазме клеток, а в этих случаях процесс восстановления клетки оказывается невозможным.

Основные процессы, нарушающие озоновый слой, до конца не установлены. Сегодня предполагается как естественное, так и антропогенное происхождение "озоновых дыр". Последнее, по мнению большинства ученых, более вероятно и связано со следующими процессами.

Взаимодействие озона с атомами и молекулами атмосферы, а также с ее техногенными загрязнениями в присутствии солнечной радиации приводит к разрушению озонового слоя. Особенно сильное разрушающее воздействие на озон оказывают галогено-углеродные соединения, в частности, хлорфторуглеродные вещества (фреоны), используемые в холодильной технике. Под действием коротковолновой солнечной радиации относительно стабильные фреоны высвобождают атомы хлора, вступающего впоследствии с озоном в каталитическую цепную реакцию:

,

.

Реакции подобного рода являются губительными для озона, а в результате ослабляется защита всего живого на Земле от УФ радиации. В районах с пониженным содержанием озона наблюдаются многочисленные случаи солнечных ожогов, рост заболеваемости людей раком кожи и др. Кроме воздействия УФ излучения на кожу возможно развитие заболеваний глаз (катаракта и др.), подавление иммунной системы и т.п.

Установлено, что под действием УФ излучения растения теряют способность к фотосинтезу, а нарушение жизнедеятельности планктона приводит к разрыву трофических цепей биоты водных экосистем.

По данным международной экологической организации "Гринпис", основными поставщиками хлорфторуглеродов в атмосферу являются США (30,9%), Япония (12,4%), Великобритания (8,6%) и Россия (8%).

В настоящее время международным сообществом предпринимаются действия, направленные на ограничение выбросов в атмосферу галогеносодержащих соединений. В США и ряде западных стран созданы заводы по производству новых видов хладагентов (гидрохлорфторуглеродов) с гораздо более низкой способностью разрушения озонового слоя. Отрицательное воздействие на состояние озонового слоя оказывают и запуски космических кораблей, ракетные двигатели которых выбрасывают в тропосферу и стратосферу такие загрязнители, как HCl, Cl, NO, CO, CO 3 и т.п. Безусловно, отказаться от развития аэрокосмического комплекса невозможно. Поэтому в последнее время проводятся исследования по созданию оптимальной рецептуры ракетного топлива и новых типов двигателей.

Согласно протоколу Монреальской конференции (1990 г.), пересмотренному затем в Лондоне (1991 г.) и Копенгагене (1992 г.), предусматривалось снижение выбросов хлорфторуглеродов к 1998 г. на 50%. Согласно статье 56 Закона Российской Федерации об охране окружающей природной среды, в соответствии с международными соглашениями, все предприятия и организации были обязаны сократить и в последующем полностью прекратить производство и использование озоноразрушающих веществ.

При этом ряд ученых продолжают настаивать на естественном происхождении "озоновой дыры". Они указывают на такие возможные причины ее возникновения, как естественная изменчивость озоносферы, циклические изменения солнечной активности и др.

 

Кислотные дожди

 

Одной из важнейших экологических проблем являются кислотные дожди, образующиеся при промышленных выбросах в атмосферу диоксида серы SO 2 и оксидов азота, которые, соединяясь с атмосферной влагой, образуют серную и азотную кислоты, выпадающие на землю вместе с дождем или снегом. Максимальная кислотность осадков была зарегистрирована в Западной Европе (pH = 2,3).

Суммарные антропогенные выбросы диоксида серы и оксидов азота в мире только в 1994 году составили более 255 млн. т. Опасность представляют, как правило, не сами кислотные осадки, а протекающие под их влиянием процессы. Под воздействием кислотных осадков из почвы выщелачиваются не только жизненно необходимые растениям питательные вещества, но и токсичные тяжелые и легкие металлы: свинец, кадмий, алюминий и др. Впоследствии они сами или образующиеся токсичные соединения усваиваются растениями и другими почвенными организмами. Возрастание содержания алюминия в подкисленной воде всего до 2 мг на литр летально для рыб. Резко сокращается развитие фитопланктона, т.к. фосфаты, активизирующие этот процесс, соединяются с алюминием и становятся менее доступными для усвоения. Алюминий также снижает прирост древесины. Токсичность тяжелых металлов (кадмия, свинца и др.) проявляется еще в большей степени.

Пятьдесят миллионов гектаров леса в 25 европейских странах страдают от воздействия сложной смеси загрязняющих веществ, включающей кислотные дожди, озон, токсичные металлы и др. Эти факторы приводят, например, к поражению хвойных лесов в Баварии. Отмечены случаи поражения хвойных и лиственных лесов в Карелии, Сибири и других районах России.

Примером негативного воздействия кислотных осадков на природные экосистемы является закисление озер, происходящее наиболее интенсивно в Канаде, Швеции, Норвегии и на юге Финляндии. Объясняется это тем, что значительная часть выбросов серы в промышленно развитых странах (США, ФРГ, Великобритании) выпадают именно на территории этих стран. Наиболее уязвимы озера в этих странах, т.к. коренные породы, слагающие их ложе, представлены гранито-гнейсами и гранитами, не способными нейтрализовать кислотные осадки, в отличие от известняков, которые создают щелочную среду и тем самым препятствуют закислению.

Закисление озер опасно не только для популяций различных видов рыб, но часто влечет за собой гибель планктона, водорослей и других живых организмов. Озера становятся практически безжизненными.

В России площадь значительного закисления от выпадения кислотных осадков достигает нескольких десятков миллионов га. Отмечены и частные случаи закисления озер в Карелии. Повышенная кислотность осадков наблюдается вдоль западной границы (за счет трансграничного переноса серы и др. загрязняющих веществ), а также на территориях ряда крупных промышленных районов.

 

Защита атмосферы

 

Для защиты атмосферного воздуха от антропогенного загрязнения вредными веществами используют следующие меры:

1. экологизацию технологических процессов;

2. очистку газовых выбросов от вредных примесей;

3. рассеивание газовых выбросов в атмосфере;

4. устройство санитарно-защитных зон.

Экологизация технологических процессов является наиболее эффективной мерой охраны воздушного бассейна от загрязнений. Она заключается, в первую очередь, в создании замкнутых технологических циклов, безотходных и малоотходных технологий.

Экологизация технологических процессов предусматривает, в частности, создание непрерывных технологических процессов производства, замену угля и мазута на природный газ, перевод на электропитание возможно большего количества механизмов типа сваебойных агрегатов, компрессоров и др.

Первоочередной проблемой является и создание экологически чистых видов транспорта. В настоящее время ведется активный поиск экологически более чистого топлива, чем бензин. В качестве его заменителей рассматриваются газ, метиловый спирт (метанол) и др. Идеальным видом топлива является водород. Созданы пробные модели автомобилей, работающих на энергии электрических аккумуляторов. Продолжаются работы по созданию автомобилей на солнечных элементах.

К сожалению, нынешний уровень экологизации технологических процессов и внедрения замкнутых технологических циклов недостаточен для полного предотвращения выбросов токсичных веществ в атмосферу. Поэтому на предприятиях используются различные методы очистки отходящих газов от аэрозолей (пыли, золы, сажи) и токсичных газообразных примесей (NO, NO 2 , SO 2 , SO 3 и др.). Однако, с точки зрения технологий будущего, эти методы не имеют перспектив.

Для очистки выбросов от аэрозолей применяют сухие пылеуловители, предназначенные для грубой механической очистки выбросов от крупной и тяжелой пыли и функционирующие на принципе оседания частиц под действием центробежных сил и сил тяжести. Применяются также и мокрые пылеуловители, работающие по принципу осаждения пыли на поверхности капель. Такие пылеуловители обеспечивают 99% очистки от частиц размером более 2 мкм. Тканевые и зернистые фильтры способны задерживать мелкодисперсные частицы пыли размером до 0,05 мкм. Электрофильтры являются одним из наиболее совершенных способов очистки газов от взвешенных в них частиц пыли размером до 0,01 мкм при высокой эффективности очистки (99,0 - 99,5%). Принцип работы электрофильтров основан на ионизации пылегазового потока у поверхности коронирующих электродов. Приобретая отрицательный заряд, пылинки движутся к осадительному электроду, на который подается положительный потенциал, и оседают на нем. При встряхивании электродов осажденные частички пыли падают в сборник пыли.

Аналогично, разработаны различные способы очистки отходящих газов от токсичных газообразных примесей. Каталитический метод заключается в поглощении примесей и превращении их в безвредные или менее вредные вещества за счет введения в систему дополнительных катализаторов. Широко используются палладийсодержащие и ванадиевые катализаторы. С их помощью происходит каталитическое досжигание CO до CO 2 и диоксида серы до оксида. Возможно также восстановление оксидов азота аммиаком до элементарного азота. Одна из разновидностей этого метода - дожигание вредных примесей с помощью газовых горелок (факельное сжигание) широко используется на нефтеперерабатывающих заводах.

Абсорбционный метод основан на поглощении вредных газообразных примесей жидким поглотителем (абсорбентом). В качестве абсорбента используют воду, растворы щелочей, аммиака и др. Устройство, в котором осуществляют процесс абсорбции, называют абсорбером.

Адсорбционный метод позволяет извлекать вредные компоненты из промышленных выбросов с помощью адсорбентов - твердых тел с ультрамикроскопической структурой (активированный уголь, силикагель и др.). Например, на АЭС применяется метод очистки газов из надреакторного пространства путем сорбции радионуклидов на угольных фильтрах.

Рассеивание газовых примесей в атмосфере используют для снижения концентраций вредных примесей до уровня, не превышающего ПДК (предельно допустимая концентрация). Рассеивание пылегазовых выбросов осуществляется с помощью высоких дымовых труб. Рассеивающий эффект возрастает с ростом высоты трубы. Так, на медно-никелевом комбинате в г. Садбери (Канада) высота трубы составляет 407 м. Высотой не менее 100 м характеризуются выбросные трубы на АЭС для рассеивания радиоактивных выбросов. Применение высоких выбросных труб, конечно, не является наилучшим решением проблемы, так как, уменьшая локальное загрязнение в районе соответствующего предприятия, этот метод не снижает остроту проблемы выпадения кислотных дождей в региональном масштабе.

Санитарно-защитной зоной называют полосу, отделяющую источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширину санитарно-защитных зон устанавливают в зависимости от степени вредности производства и количества выбрасываемых в атмосферу вредных веществ. Обычно она принимается равной от 50 м до 1000 м. Санитарно-защитная зона озеленяется газоустойчивыми породами деревьев и кустарников (белой акацией, канадским тополем, елью и др.). Об эффективности озеленения свидетельствуют следующие данные: хвоя одного гектара елового леса улавливает 32 т пыли, листва букового леса - 68 т.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...