Виды моторной деятельности различных отделов желудочно-кишечного тракта. Регуляция моторной деятельности желудочно-кишечного тракта.
Моторная и эвакуаторная функции желудка. В стенке желудка имеются гладкомышечные волокна, расположенные в продольном, циркулярном и косом направлениях. В области привратника циркулярные мышцы формируют пилорический сфинктер. В период поступления пищи стенка желудка расслабляется и давление а нем падает. Это состояние называется рецептивным расслаблением. Оно способствует накоплению пищи. Моторная активность желудка проявляется движениями трех типов: 1. Перистальтические сокращения. Они начинаются в верхних отделах желудка. Там находятся клетки водители ритма (пейсмекеры). Отсюда эти круговые сокращения распространяются к пилорическому отделу. Перистальтика обеспечивает перемешивание и продвижение химуса к пилорическому сфинктеру. 2. Тонические сокращения. Редкие однофазные сокращения участков желудка. Способствуют перемешиванию пищевых масс. 3. Пропульсивные сокращения. Это сильные сокращения антрального и пилорического отделов. Они обеспечивают переход химуса в двенадцатиперстную кишку. Скорость перехода пищевых масс в кишечник зависит от их консистенции и состава. Плохо измельченная пища дольше задерживается в желудке. Жидкая переходит быстрее. Жирная пища тормозит этот процесс, а белковая ускоряет. Регуляция моторной функции желудка осуществляется миогенными механизмами, экстрамуральными парасимпатическими и симпатическими нервами, интрамуральными сплетениями и гуморальными факторами. Гладкомышечные клетки водители ритма желудка сконцентрированы в кардиальной части. Они находятся под контролем экстрамуральных нервов и интрамуральных сплетений. Основную роль играет вагус. При раздражении механорецепторов желудка импульсы от них поступают к центрам вагуса, а от них к гладким мышцам желудка, вызывая их сокращения. Кроме того, импульсы от механорецепторов идут к нейронам интрамуральных нервных сплетений, а от них к гладкомышечным клеткам. Симпатические нервы оказывают слабое тормозящее влияние на моторику желудка. Гастрин и гистамин учащают и усиливают движение желудка. Тормозит их секрецию и желудочный ингибирующий пептид.
Защитным рефлексом пищеварительного тракта является рвота. Она заключается в удалении желудочного содержимого. Рвоте предшествует тошнота. Рвотный центр расположен в ретикулярной формации продолговатого мозга. Рвота начинается с глубокого вдоха, после которого гортань закрывается. Желудок расслабляется. Благодаря сильным сокращениям диафрагмы, содержимое желудка выбрасывается наружу, через открытые пищеводные сфинктеры. Моторная функция тонкого и толстого кишечника. Сокращение кишечника обеспечивается гладкомышечными клетками, образующими продольный и циркулярный слои. Благодаря связям клеток между собой гладкие мышцы кишечника являются функциональным синцитием. Поэтому возбуждение быстро и на большие расстояния распространяется по нему. В тонком кишечнике наблюдаются следующие типы сокращений: 1. Непропульсивная перистальтика. Это волна сужения кишки, образующаяся за счет сокращения циркулярных мышц и распространяющаяся в каудальном направлении. Ей не предшествует волна расслаблений. Такие волны перистальтики движутся лишь на небольшое расстояние. 2. Пропульсивная перистальтика. Это также распространяющееся локальное сокращение циркулярного слоя гладких мышц. Ему предшествует волна расслабления. Такие перистальтические волны более сильные и могут захватывать весь тонкий кишечник. Перистальтические волны формируются в начальном отделе двенадцатиперстной кишки, где расположены пейсмекерные гладкомышечные клетки. Они движутся со скоростью от 0,1 до 20 см/сек. За счет непропульсивной перистальтики обеспечивается продвижение химуса на небольшие расстояния. Пропульсивная перистальтика возникает к концу пищеварения и служит для перехода химуса в толстый кишечник.
3. Ритмическая сегментация. Это местные сокращения циркулярных мышц в результате которых на кишечнике образуются множественные перетяжки разделяющие его на небольшие сегменты. Место расположения перетяжек постоянно меняется. Благодаря этому происходит перемешивание химуса. 4. Маятникообразные сокращения. Этот вид наблюдается при попеременном сокращении и расслаблении продольного слоя мышц участка кишки. В результате отрезок кишки движется назад-вперед и происходит перемешивание химуса. Кроме того, наблюдаются движения макроворсин тонкого кишечника. В них проходят гладкомышечное волокно. Их движения улучшают контакт слизистой с химусом. В толстом кишечнике продольный слой гладкомышечных клеток образует ленты на кишке. В нем возникают следующие виды сокращений: 1. Маятникообразные. 2. Ритмическая сегментация. 3. Пропульсивная перистальтика. Она возникает 2-3 раза в день и способствует быстрому переходу содержимого в сигмовидную и прямую кишку. 4. Волны гаустрации. Это вздутия (гаустры) кишки, возникающие вследствие локального сокращения и расслабления продольных и циркулярных мышц. Эта волна сокращения-расслабления медленно перемещается по кишке. Такой вид соответствует непропульсивной перистальтике и также служит для передвижения содержимого. Регуляция моторики кишечника осуществляется миогенными, нервными и гуморальными механизмами. Миогенные заключаются в способности гладкомышечных клеток, в особенности пейсмекеров, к автоматии. В них возникают спонтанные медленные колебания мембранного потенциала – медленные волны. На вершинах этих волн деполяризации генерируются пачки потенциалов действия, сопровождающихся ритмическими сокращениями. Медленные волны с потенциалом действия распространяются по продольному слою гладких мышц каудально. Это главный механизм перистальтики. Кроме того гладкомышечные клетки возбуждаются при растяжении. Поэтому возрастает частота и амплитуда медленных волн. Чем дальше от желудка тем ниже частота спонтанной активности пейсмекеров. Важную роль в регуляции моторики играют интрамуральные нервные сплетения. При растяжении стенки кишки возбуждаются чувствительные нейроны подслизистого слоя. Импульсы от них идут к эфферентным нейронам межмышечного. От последних отходят возбуждающие холинергические окончания к гладкомышечным клеткам кишки. Роль экстрамуральных вегетативных нервов небольшая. Парасимпатические нервы стимулируют моторику, а симпатические тормозят. За счет интрамуральных сплетений и отчасти экстрамуральных нервов осуществляется ряд моторных рефлексов. Например желудочно-кишечный или кишечно-кишечный. В частности при раздражении дистального отдела кишки моторика проксимального тормозится.
Тормозят моторику адреналин и норадреналин, а стимулируют ацетилхолин, серотонин, гистамин, брадикинин. Движения ворсин активирует кишечный гормон вилликинин. Он образуется энтерохромаффинными клетками слизистой при воздействии соляной кислоты. В эксперименте секреторная функция тонкого кишечника исследуется путем создания изолированного отрезка кишки по Тири-Велли или Тири-Павлову. В последнем случае сохраняется иннервация кишки. В клинике секреторную функцию изучают с помощью зондирования специальным трехканальным зондом. Им можно получить относительно чистый кишечный сок. В последующем определяют содержание ферментов. Используются также копрологическое исследование, фиброколоноскопию. Моторику изучают рентгеноскопически.
| |||||||||||
Билет 32 | |||||||||||
12.Звукоулавливающий, звукопроводящий и рецепторный отдел слуховой системы. Анализ высоты и силы звука, адаптация органа слуха к звукам разной интенсивности. Слуховой анализатор воспринимает звуковые сигналы, представляющие собой колебания воздуха с разной частотой, силой, трансформирует механическую энергию этих колебаний в нервное возбуждение, которое субъективно воспринимается как звуковое ощущение.
Периферическая часть слухового анализатора или органа слуха состоит из трех основных отделов; 1, Звукоулавливающий аппарат (наружное ухо). 2. Звукопередающий аппарат (среднее ухо]. 3. Звуковоспринимающий аппарат (внутреннееухо). Наружное ухо состоит из ушной раковины, наружного слухового прохода и барабанной перепонки. Ушная раковина, подобно локатору, улавливает звуковые колебания, концентрирует их направляет в наружный слуховой проход. Эта функция особенно хорошо развита у некоторых видов животных (собак, кошек, летучих мышей), у которых благодаря рефлекторному управлению ушной раковиной происходит определение местонахождения источника звука. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке и играет роль резонатора, собственная частота колебаний которого составляет 3000 Гц. При действии на ухо звуковых колебаний, близких по своим значениям к 3000 Гц, давление на барабанную перепонку увеличивается. Наружное ухо выполняет защитную функцию, охраняя отдельные структуры уха от механических и температурных воздействий, обеспечивает постоянную температуру и влажность, необходимую для сохранения упругих свойств барабанной перепонки. На границе между наружным и средним ухом находится барабанная, перепонка - это малоподвижная и слаборастяжимаямембрана, площадь которой составляет 66-69,5 мм2. Она имеетформу конуса с вершиной, направленной в полость среднего уха. Основная функция барабанной перепонки - передача звуковых колебаний в среднее ухо. Колебания барабанной перепонки передаются в среднее ухо, в котором содержится цепь соединенных между собой косточек: молоточка, наковальни и стремечка. Рукоятка молоточка прикреплена к барабанной перепонке, основание стремечка -к овальному окну, Благодаря передаточной функции слуховых косточек давление звука в области круглого окна улитки увели- чивается в 20 раз. В среднем ухе находятся две мышцы: мышца, натягивающая барабанную перепонку и прикрепленная к ручке молоточка, и стопедиольная, прикрепленная к стремечку. За счет сокращения этих мышц происходит уменьшение амплитуды колебании барабанной перепонки и снижение коэффициента передачи уровня звукового давления на область внутреннего уха. Эти мышцы выполняют защитную функцию при действии звуковых колебаний больше 90 дБ и действующих длительное время. При резких внезапных звуках (удар в колокол) этот механизм не срабатывает. В полости среднего уха давление приближается к атмосферному, это необходимо для нормальных колебании барабанной перепонки. Уравновешиванию давления (при глотании)
способствует специальное образование - евстахиева труба, которая соединяет носоглотку с полостью среднего уха.внутреннее ухо соединено со средним с помощью овального окна, в котором неподвижно укреплено основание стремечка. Внутреннее ухо состоит из костного и лежащего в нем перепончатого лабиринтов, в котором находятся вестибулярный (преддверие и полукружные каналы) и слуховой аппараты, К последнему относится улитка. Улитка имеет длину 3,5 мм, что составляет 2,5 завитка. Она разделена двумя мембранами: основной и мембраной Рейснера на три хода или лестницы: барабанную, среднюю и вестибулярную Средняя лестница изолирована и заполнена эндолимфой, богатой ионами К* (около 155 ммоль/л) и напоминающей по своему составу внутриклеточную жидкость. Это обусловливает положительный заряд эндолимфы по отношению к перилимфе. Основание барабанной лестницы сообщается со средним ухом с помощью еще одного отверстия — круглого окна, закрытого тонкой мембраной. На основной мембране средней лестницы расположен кортиев орган - собственно звуковоспринимающий аппарат, содержащий рецепторы — внутренние и наружные волосковые клетки, несущие только стереоцилии. Внутренних волосковых клеток у человека около 3500, они располагаются в один ряд, и имеются три ряда наружных волосковых клеток, их приблизительно 12000. Слуховые рецепторы — вторичночувствующие. Понижение слуховой чувствительности, развивающееся в процессе длительного действия звука большой интенсивности или после его прекращения, называют слуховой адаптацией. Она обусловлена изменениями как в периферических, так и центральных отделах слухового анализатора. Ухо, адаптированное к тишине, обладает более низким порогом слуховой чувствительности. При длительном действии звуков большой интенсивности (громкая музыка, работа в шумных цехах) порог слуховой чувствительности повышается. Рациональное сбалансированное питание. Роль углеводов, жиров, насыщенных и ненасыщенных жирных кислот, белков, витаминов, витаминоподобных веществ, минеральных веществ, микро- и макроэлементов в организме. Роль пищевых волокон. Рациональное питание – это питание, обеспечивающее рост, нормальное развитие и жизнедеятельность человека, способствующее улучшению его здоровья и профилактике заболеваний. Рациональное питание предполагает: 1. Энергетическое равновесие 2. Сбалансированное питание 3. Соблюдение режима питания Первый принцип: энергетическое равновесие Второй принцип: сбалансированное питание Третий принцип: режим питания УГЛЕВОДЫ 1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. 2. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК) 3. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды. 4. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений 5. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрации глюкозызависит осмотическое давление крови. 6. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов. Жиры в организме выполняют энергетическую, пластическую, защитную функции, роль депо. Из жиров также образуются элементы клеточных структур, ряд биологически активных веществ, например, гормоны, простагландины, витамины А и Д. Защитная функция жиров заключается в предохранении кожи от высыхания и от действия воды, а так же защиты организма от механических воздействий от переохлаждения. Роль депо жиров заключается в том, что они составляют резерв энергии и воды. При окислении 100 г жира образуется 110 г воды и освобождается 930 ккал энергии. Жиры синтезируются из жирных кислот и глицерина, из аминокислот и моносахаридов. Белки гормоны участвуют в управлении всеми жизненными процессами - ростом, размножением и т.п. Минеральные вещества, также, обеспечивают сокращение мышц, энергетику мышц, их первую проводимость и водно-электролитный баланс. Минералы могут быть структурными единицами для формирования различных тканей, являются составляющими ферментных систем, витаминов и гормонов. - Пищевые волокна способствуют выведению холестерина из организма, причем «вредной» фракции холестерина, что важно при нарушении жирового обмена, атеросклерозе, гипертонической болезни, ишемической болезни сердца, · пищевые волокна способствуют выравниванию уровня глюкозы и инсулина в крови, что важно для больных сахарным диабетом 2 типа, · пищевые волокна способствуют выведению тяжелых металлов, радионуклидов, токсических веществ, · пищевые волокна, удерживая воду, способствуют улучшению опорожнения кишечника, естественному очищению организма, · пищевые волокна используются полезными бактериями кишечника для своей жизнедеятельности;
Билет 33 13.Вегетативная нервная система: топография нервных центров, ганглиев; строение рефлекторной дуги вегетативного рефлекса; медиаторы; адрено- и холинорецепторы; виды вегетативных рефлексов. Влияние отделов вегетативной нервной системы на функции внутренних органов В вегетативной нервной системе выделяют симпатический и парасимпатический отделы. Эти отделы имеют центральную и периферические части. Центральные структуры расположены в среднем, продолговатом и спинном мозге; периферические представлены ганглиями и нервными волокнами. Многие внутренние органы получают как симпатическую, так и парасимпатическую иннервацию. Влияние этих двух отделов носит антагонистический характер, но этот антагонизм относителен, Имеется много примеров, когда симпатический и парасимпатический отделы действуют синергично (например, и тот и другой увеличивают слюноотделение). Обычно повышение тонуса одного отдела вегетативной нервной системы вызывает усиление активности другого. Многие внутренние органы наряду с симпатической и парасимпатической иннервациями имеют собственный местный нервный механизм регуляции функций, в значительной степени автономный. Наличие общих черт в структурной и функциональной организации, а также данные онто- и филогенеза позволили выделить в составе вегетативной нервной системы (в периферическом ее отделе) еще и третий отдел - внутриорганный.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|