Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Расчет параметров зоны ЧС (разрушений)




 

При взрыве ГВС образуется зона ЧС с ударной волной, вызывающей разрушения зданий, оборудования и т. п. аналогично тому, как это происходит от УВ ядерного взрыва.

В данной же методике зону ЧС при взрыве ГВС делят на 3 зоны:

· зона детонации (детонационной волны);

· зона действия (распространения) ударной волны;

· зона воздушной УВ.

 

Зона детонационной волны (зона I) находится в пределах облака взрыва.

Радиус этой зоны r1приближенно может быть определен по формуле:

 

r1=17.5·3Q

где Q - количество взрывоопасной смеси ГВС, хранящейся в емкости, т.

 

В пределах зоны I действует избыточное давление (ΔРф), которое принимается постоянным ΔРф1 = 1700 кПа [17]

Зона действия УВ взрыва (зона II) – охватывает всю площадь разлета ГВС в результате ее детонации.

Радиус этой зоны:

r2=1.7·r1

 

Избыточное давление в пределах зоны II изменяется от 1350 кПа до 300 кПа и находится по формуле:

 

ΔРф2=1300·r1r+50

 

где r – расстояние от центра взрыва до рассматриваемой точки, м.

 

В зоне действия воздушной УВ (зона III) – формируется фронт УВ, распространяющийся по поверхности земли.

Радиус зоны r3>r2, и r3 - это расстояние от центра взрыва до точки, в которой требуется определить избыточное давление воздушной УВ (ΔРф3): r3=r.

Избыточное давление в зоне III в зависимости от расстояния до центра взрыва может рассчитываться по формуле при ψ2 (единый параметр Ψ):

 

 

ΔРф=7003∙1+29.8∙ψ3-1

 

при ψ2

ΔРф=22ψ∙lgψ+0.158

ψ=0,24r3/r1= (0,24r)/(17,5относительная величина).

 

Пример 2. Определить избыточное давление в районе механического цеха при взрыве емкости со сжиженным пропаном в количестве Q=100т, если расстояние от емкости до цеха равно r=300м.

 

Решение:

 

r1=17.5·3Q=17.5·3100 ≈ 80

 

Вычислим радиус зоны действия продуктов взрыва (зона II):

 

r2 = 1,7r1 = 1,7·80 = 136 (м)

 

Находим радиус зоны действия воздушной УВ (зона III)

 

r3 = r = 300 (м).

 

Сравнивая расстояния от механического цеха до центра взрыва (r = 300 м) с найденными радиусами зоны I (r1 = 80 м) и зоны II (r2 = 136 м), можно сказать, что цех находится в пределах этих зон и следовательно может оказаться в зоне воздушной УВ (зона III).

 

Определим относительную величину:

 

ψ= 0,24 r3/r1= 0,24·300/80=0,9.

 

Таким образом, избыточное давление воздушной УВ на механический цех:

 

 

Контрольный пример. Определить избыточное давление УВ в районе механического цеха объекта экономики при взрыве емкости со сжиженным пропаном в количестве Q=100 т, если расстояния от емкости до цеха r = 600 м.

 

Ответ: ψ=1,8 и ΔРф = 20 кПа.

 

Задания для самостоятельной работы

 

Определить избыточное давление в районе объекта при взрыве емкости со сжиженным газом при заданном расстоянии от емкости до объекта.

Таблица 18

Вариант Вещество Количество, т R, м
  пропан    
  бутан    
  этан    
  пропан    
  этан    
  ацетилен    
  этилен    
  водород    
  аммиак    
  этан    

 

 

Практическое занятие № 7

Тема: Методика количественной оценки риска.

Цель: изучить методы количественной оценки риска.

Вопросы:

1. Основные положения теории риска.

2. Количественная оценка риска.

3. Анализ опасностей методом построения «дерева событий».

 

Одной из основных задач БЖД является определение количественных характеристик опасности (идентификация). Только зная эти характеристики можно на базе общих методов разработать эффективные частные методы обеспечения безопасности и оценивать существующие технические системы и объекты с точки зрения их безопасности для человека.

Определения риска

Риск – частота реализации опасностей.

Риск – количественная характеристика действия опасностей, формируемых конкретной деятельностью человека.

Риск – вероятность реализации негативного воздействия в зоне прибытия человека.

В производственных условиях различают индивидуальный и коллективный риск.

Индивидуальный риск характеризует реализацию опасности определенного вида деятельности для конкретного индивидуума.

Коллективный риск – это риск для группы людей, двух и более человек от воздействия опасных и вредных производительных факторов.

В системе «человек-техника-среда» к таким факторам относятся - ошибочные действия персонала, отказы технологических систем и окружающая внешняя среда.

Если принять за уровень безопасности вероятность Р за весь период эксплуатации Тэ, то вероятность противоположного события – появление происшествия Q. Приняв во внимание, что вероятности Р и Q образуют полную группу несовместных событий, получим равенство:

Р+Q=1.

Вероятности Р и Q – показатели для оценки безопасности (уровень риска) и для этого достаточно знать одну из этих вероятностей. Обычно в авиации, атомной энергетике, пожарной безопасности определяют уровень риска Q.

Безопасность, как состояние объекта защиты может быть предоставлена набором разнородных параметров.

Так параметры такого элемента системы ЧТС как «техника» строго определены и реализованы при проектировании, изготовлении и вводе в эксплуатацию технических систем. К таким параметрам относятся: ресурс агрегата или системы; параметры исходного состояния и технологических режимов; скорость движения агрегатов; вид и состав топлива; электрические параметры; параметры рабочей зоны; длительность эксплуатации; техническое состояние агрегата или системы; состояние дорог и т.д.

К параметрам внешней среды относятся – барометрическое давление, температура, влажность, скорость движения воздуха, а также непредвиденные, но влияющие на уровень риска набор определенных параметров. Это – снег, град, дождь, лед, биологические объекты, видимость на дорогах, возможность столкновения и съезда (схода) с пути.

К параметрам характеризующим персонал относятся такие как – состав, обученность (классность), психофизиологические параметры и параметры, изменяемые системой управления или самим человеком.

Обозначим соответственно параметры в системе ЧТС: техники – Хт, среды – Uс, человек - Zч. Тогда уровень риска может быть представлен в виде следующей зависимости:

Q=F(Xт,Yс,Zч).

Помимо этого, уровень риска зависит от характера связей и отношений между элементами системы и других отдельных свойств (например, надежность) агрегатов и систем.

Выявление функции определяющей уровень риска в стогом формализованном виде является основной проблемой в теории безопасности для оценки любых технических систем и процессов.

Решение ее возможно при создании достаточно полной модели рассматриваемой системы специально приспособленной для исследования безопасности.

Формально риск – это частота реализации опасностей. Количественная оценка риска – это отношение числа тех или иных неблагоприятных последствий к их возможному числу за определенный период.

Пример: определить риск быть ввергнутым в несчастный случай связанный с ДТП в нашей стране за 1 год, если известно, что ежегодно погибает в этих происшествиях около n=30 тыс. человек. Принимая численность населения страны N=150 млн. человек, определим риск Rg жителей страны от опасности попасть в ДТП:

Rg = n/N = 3∙104 / 1,5∙108 ≈ 2∙10-4.

Значение риска от конкретной опасности можно получить из статистики несчастных случаев, случаев заболевания, случаев временной нетрудоспособности, вызванных действием на человека конкретной опасности (электрический ток, вредное вещество, высота, двигающиеся предметы и агрегаты, криминальные элементы общества и др.), отнесенных на определенное количество жителей (работников), за конкретный период времени (смена, сутки, неделя, квартал, год).

Риск как количественную характеристику реализации опасностей от негативных факторов производства можно использовать для оценки состояний условий труда, экономического ущерба, формирования системы социальной политики на производстве, для обоснованного сравнения безопасности различных отраслей экономики и типов работ.

Выделяют 4е методических подхода к определению риска:

1. Инженерный, опирающийся на статистику, расчет частот, вероятный анализ безопасности, построение деревьев опасности.

2. Модельный, основанный на построении моделей воздействия опасных и вредных факторов на отдельного человека, коллективы и профессиональные группы.

3. Экспертный, когда вероятность событий определяется на основе опроса опытных специалистов – экспертов.

4. Социологический, основанный на опросе населения.

 

Инженерный подход для количественного определения риска нашел наибольшее применение не только для оценки безопасности в одной отрасли промышленности, но и для оценки изменения этого уровня со временем и при различных условиях труда.

Количественно ожидаемый или прогнозируемый риск R – это произведение частоты реализации конкретной опасности f на произведение вероятностей нахождения человека в «зоне риска» (П Pi) при различном регламенте технологического процесса.

n

R = f П Pi (i = 1,2,3..., n),

i=1

где: f – частота несчастных случаев (травм, гибель) от данной опасности

чел.-1 год-1.

Для отечественной практики f = Кч ∙ 10-3, соответствует знанию коэффициента частоты несчастного случая деленного на 1000, т.е.

 

Н – общее количество несчастных случаев на производстве (травмы, гибель, инвалидность).

С – среднесписочная численность работающих на предприятии.

n

П Pi – произведение вероятностей нахождения работника в «зоне риска».

Р1 – вероятность нахождения работника в цехе в течение года (отношение числа рабочих дней в году к общему числу дней в году);

Р2 – вероятность работы человека на производстве в течение недели (отношение числа рабочих дней в неделе к числу дней недели);

Р3 – вероятность выполнения работником технологического задания непосредственно на оборудовании (отношение времени выполнения задания к продолжительности рабочей смены);

Рn – другие вероятности участия работника в производственной деятельности.

Приемлемый риск

Это такой низкий уровень гибели, травматизма или инвалидности людей, который не влияет на экономические показатели предприятия, отрасли экономики или государства.

Необходимость формирования концепции приемлемого (допустимого) риска обусловлена невозможностью создания абсолютно безопасной деятельности (технологического процесса) Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты и представляет некоторый компромисс между уровнем безопасности и возможностями ее достижения.

В зависимости от уровня риска гибели человека все виды профессиональной деятельности делятся на (степени опасности):

- безопасную (средний риск Rср < 10-4);

- относительно безопасную (10-4 < Rср < 10-3);

- опасную (10-3 < Rср < 10-2);

- особо опасную (Rср > 10-2).

В настоящее время по международной договоренности принято считать, что действия техногенных безопасностей (технический риск) должно находиться в пределах от 10-7 до 10-6 (случаев гибели человека в год), а величина 10-6 является максимально приемлемым уровнем индивидуального риска.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...