Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Геометрическая вероятность




 

Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно.

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область.

 

Пусть эксперимент состоит в случайном выборе точки из некоторой области. Полагаем выбор любой точки равновозможным. Заданную в пространстве область обозначим W. В эксперименте, связанном со случайным выбором только одной точки из W, множество W является пространством элементарных событий. Случайными событиями в этом случае можно считать разные подмножества из W. Будем говорить, что случайное событие А наступило, если наугад выбранная точка x принадлежит подмножеству А, т.е.

 

Определение 18.2.4.

Пусть W – некоторый отрезок, L – его длина. А – отрезок длины l, принадлежащий W. Событие А состоит в попадании точки, брошенной в большой отрезок в А. Тогда

 

 

Аналогично, если множествомW элементарных исходов случайного эксперимента является фигура на плоскости площади S, а область А, ее подмножество, куда может попасть случайно брошенная на W точка, имеет площадь s, соответствующая вероятность события А – попадания в область А тогда

,

И, наконец, если речь идет об объемных фигурах, соответственно, W объема V и входящей в нее области А объема v

 

,

 

Замечание 18.2.3.. Строго говоря, рассматриваемый здесь подход требует введения более общей характеристики (функции) множества – его меры (mes (A)), частными случаями которой являются длина, площадь и объем, и тогда вероятность события А будет отношением меры множества А к мере множества W

 

Пример 1. В квадрат вписан круг. Точка случайным образом бросается в квадрат. Какова вероятность того, что она попадет в круг? Согласно приведенной формуле соответствующая вероятность будет отношением площади круга к площади квадрата.

Пример 2. Два человека обедают в кафе в обеденный перерыв, который начинается у них в одно время и продолжается 1 час, от 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x — время прихода в кафе первого, а y — время прихода второго . Встретиться они могут только тогда, когда оба находятся в кафе.

Рис.1

Можно установить взаимно-однозначное соответствие между всеми парами чисел (x; y) (или множеством исходов) и множеством точек квадрата со стороной, равной 1, на координатной плоскости, где начало координат соответствует числу 12 по оси X и по оси Y, как изображено на рисунке 1. Здесь, например, точка А соответствует исходу, заключающемуся в том, что первый пришел в 12.30, а второй - в 13.00. В этом случае, очевидно, встреча не состоялась.

Если первый пришел не позже второго (y ³ x), то встреча произойдет при условии 0 £ y - x £ 1/6 (10 мин.- это 1/6 часа).

Если второй пришел не позже первого (x ³ y), то встреча произойдет при условии 0 £ x - y £ 1/6..

Таким образом, в первом случае нас будет удовлетворять условие y £ x + 1/6, а во втором

y ≥ x - 1/6. Область, удовлетворяющая этим двум условиям заштрихована на рис. 2

 

 

Рис. 2

 

Иными словами, в терминах геометрической вероятности, вероятность встречи есть отношение площади заштрихованной «полосы» между прямыми y = x + 1/6 и y = x - 1/6 внутри квадрата к площади самого квадрата.

Искомая вероятность p равна отношению площади заштрихованной области к площади всего квадрата.. Площадь квадрата равна единице, а площадь заштрихованной области можно определить как разность единицы и суммарной площади двух треугольников, изображенных на рисунке 7. Отсюда следует:

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...