Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Витаминная ценность ретиноидов и каротиноидов




История открытия

В 1906 году английский биохимик Фредерик Хопкинс предположил, что помимо белков, жиров, углеводов и так далее, пища содержит ещё какие-то вещества, необходимые для человеческого организма, которые он назвал «accessory food factors»[5]. В 1912 году Казимир Функ предложил название «витамин» — от латинских слов vita — жизнь, amine — амин (он ошибочно полагал, что все витамины содержат азот)[3].

Открытие самого витамина A произошло в 1913 году. Две группы учёных, Элмер Макколлум[en]* (1859—1929) и Маргарет Дэвис (1887—1967) из Висконсинского университета и Томас Осборн[en] (1859—1929) и Лафайет Мендель[en] (1872—1935) из Йельского университета, независимо друг от друга после серии исследований пришли к выводу, что сливочное масло и желток куриного яйца содержат какое-то необходимое для нормальной жизнедеятельности вещество. На их экспериментах было показано, что мыши, питавшееся лишь комбинацией казеина, жира, лактозы, крахмала и соли страдали от воспаления глаз и диареи и умирали по происшествии около 60 дней. При добавлении в рацион сливочного масла, масла из печени трески или яйца они приходили в норму. Это означало, что требовалось не только наличие жира, но и какие-то другие вещества. Макколлум разделил их на два класса — «жирорастворимый фактор A» (на самом деле содержал витамины A, E и D) и «водорастворимый фактор B»[3][5].

В 1920 году Джек Сесиль Драммонд[en] (1891—1952) предложил новую номенклатуру витаминов и после этого витамин приобрёл современное название[5]. В том же году Хопкинс показал, что при окислении или сильном нагревании витамин A разрушается[5].

В 1931 году швейцарский химик Пауль Каррер (1889—1971) описал химическую структуру витамина A. Его достижение было отмечено Нобелевской премией по химии в 1937 году. Гарри Холмс (1879—1958) и Рут Корбет кристаллизовали витамин A в 1937 году. В 1946 году Давид Адриан ван Дорп[en] (1915—1995) и Йозеф Фердинанд Аренс[nl] (1914—2001) синтезировали витамин A. Отто Ислер (1920—1992) в 1947 году разработал промышленный метод его синтеза[5].

Роль витамина A в зрении была открыта биохимиком Джорджем Уолдом (1906—1997), за что он получил Нобелевскую премию по физиологии и медицине в 1967 году[5].

Физико-химические свойства

Вещества группы витамина A являются кристаллическими веществами. Они нерастворимы в воде, но хорошо растворимы в органических растворителях[6].

Ретинол разлагается кислородом воздуха и очень чувствителен к свету. Все соединения склонны к цис - транс -изомеризации, особенно по связям 11 и 13, однако кроме 11- цис -ретиналя все двойные связи имеют транс -конфигурацию[6].

Свойства соединений, входящих в группу A[6]
Соединение Молярная масса Температура плавления, °C λмакс (этанол), нм
Ретинол 286,43   324—325
Ретиналь 284,45 61—64  
Ретиноевая кислота 300,45    
Ретинолпальмитат 524,8 28—29 325—328
Ретинолацетат 328,5 57—58  

Строение и формы

Ретинол

Ретиналь

Ретиноевая кислота

Витамин A представляет собой циклический непредельный спирт, состоящий из β-иононового кольца и боковой цепи из двух остатков изопрена и первичной спиртовой группы. В организме окисляется до ретиналя (витамин A-альдегид) и ретиноевой кислоты. Депонируется в печени в виде ретинилпальмитата, ретинилацетата и ретинилфосфата[2].

В продуктах животного происхождения содержится во всех формах, однако так как чистый ретинол нестабилен, то основная часть находится в виде сложных эфиров ретинола (в промышленности в основном выпускается в виде пальмитата или ацетата)[7].

В растениях содержатся провитамины A — некоторые каротиноиды. Предшественником витамина могут быть две группы структурно близких веществ: каротины (α-, β- и γ-каротины) и ксантофиллы (β-криптоксантин). Каротиноиды также являются изопреноидными соединениями, α и γ-каротины содержат по одному β-иононовому кольцу и при окислении образуется одна молекула ретинола, а в β-каротине содержится два иононовых кольца, следовательно, он обладает большей биологической активностью и из него образуется две молекулы ретинола[2].

Плотоядные животные, такие как, например, кошачьи из-за отсутствия 15-15'-монооксигеназы не могут преобразовать каротиноиды в ретиналь (в результате ни один из каротиноидов не является формой витамина A для этих видов)[8].

Пищевые источники

Ретинол присутствует в продуктах животного и растительного происхождения, особенно много его в печени морских рыб и млекопитающих. Источником витамина для человека могут также быть каротины. Они нетоксичны в высоких дозах, но не могут полностью заменить ретинол, так как лишь ограниченное количество способно превратиться в витамин A. Наибольшее количество β-каротина содержится в различных сортах моркови, но его концентрация может резко варьироваться от сорта к сорту (от 8 до 25 мг на 100 г). Хорошими источниками являются красный перец, зелёный лук, салат, тыква и томаты[2].

Растительные (каротиноиды) Животные (ретиноиды)
Зелёные и жёлтые овощи (морковь, тыква, сладкий перец, шпинат, брокколи, зелёный лук, зелень петрушки), бобовые (соя, горох), персики, абрикосы, яблоки, виноград, арбуз, дыня, шиповник, облепиха, черешня Рыбий жир, печень (особенно говяжья), икра, молоко, сливочное масло, маргарин, сметана, творог, сыр, яичный желток

Генетически модифицированный золотой рис, в зёрнах которого содержится большое количество бета-каротина, является потенциальным решением для устранения дефицита витамина A. Однако пока ни одна разновидность «золотого риса» не доступна для употребления в пищу[9].

Синтетический ретинол (в виде сложных эфиров) получают из β-ионона, постепенно наращивая цепочку из двойных связей[10].

Суточная потребность

В среднем взрослому мужчине нужно 900 мкг, а женщине 700 мкг витамина A в сутки. Верхний допустимый уровень потребления для взрослых — 3000 мкг в сутки[11].

Рекомендованное суточное употребление витамина A[12]
Возрастная категория Норма употребления, мкг/сутки Верхний допустимый уровень потребления, мкг/сутки
Младенцы 400 (0—6 мес.), 500 (7—12 мес.)  
Дети 300 (1—3 года), 400 (4—8 лет) 600 (1—3 года), 900 (4—8 лет)
Мужчины 600 (9—13 лет), 900 (14 — >70 лет) 1700 (9—13 лет), 2800 (14—18 лет), 3000 (19 — >70 лет)
Женщины 600 (9—13 лет), 700 (14 — >70 лет) 1700 (9—13 лет), 2800 (14—18 лет), 3000 (19 — >70 лет)
Беременные женщины 750 (<19 лет), 770 (19 — >50 лет) 2800 (<19 лет), 3000 (19 — >50 лет)
Женщины, кормящие грудью 1200 (<19 лет), 1300 (19 — >50 лет) 2800 (<19 лет), 3000 (19 — >50 лет)

Метаболизм

Превращение β-каротина в ретинол

Усвоение витамина A из продуктов и лекарственной формы происходит с участием специальных гидролаз (карбоксилэстеразы и липазы[13]) поджелудочной железы и слизистой оболочки тонкой кишки. У детей до 6 месяцев гидролазы функционируют недостаточно. Для всасывания важно наличие достаточного количества жирной пищи и желчи. Всасывание происходит в составе мицелл, затем в энтероцитах они включаются в состав хиломикронов[2]. Попавший в клетку эпителия кишечника витамин вновь превращается в эфир пальмитиновой кислоты и в таком виде поступает в лимфу, а затем в кровь. Из мышцы всасывается только ацетат ретинола[4].

β-Каротин сначала расщепляется 15-15'-монооксигеназой в центральной части молекулы с образованием ретиналя, а затем — редуктазой с участием коферментов NADH и NADPH. Одновременный приём с пищей антиоксидантов препятствует окислению каротина по периферическим двойным связям. Витамин B12, повышает активность монооксигеназы. Это увеличивает количество молекул каротина, которые расщепляются по центральной связи, и эффективность синтеза витамина A увеличивается в 1,5—2 раза[2].

В крови витамин A соединяется со специальным белком, связывающим ретинол (БСР), синтезируемым в печени. Ретиноевая кислота соединяется с альбумином[7]. Белок обеспечивает растворимость ретинола, защиту от окисления и транспорт в различные ткани. Препарат, не связанный с белком, токсичен. Затем образовавшийся комплекс (витамин A + БСР) соединяется ещё с одним белком — транстиретином, препятствующим фильтрации препарата в почках. По мере использования тканями витамина A происходит его отщепление от вышеназванных белков и поступление в ткани[4].

Главное место накопления витамина — печень (90 %), в меньших количествах также хранится в почках, жировой ткани и надпочечниках[7].

Поступление ретинола к плоду через плаценту в последнем триместре беременности регулируется специальным механизмом, вероятно, с фетальной стороны. Избыток витамина A депонируется в печени в виде эфира пальмитиновой кислоты. Депо препарата в печени принято считать достаточным, если оно превышает 20 мкг/г её ткани — у новорождённого и 270 мкг/г ткани — у взрослого. Показателем содержания витамина A в печени служит и его уровень в плазме крови: если он меньше 10 мкг/дл, то у человека гиповитаминоз. У доношенного ребёнка запасов витамина A хватает на 2—3 месяца[4].

В клетках органов-мишеней есть специальные цитозольные рецепторы, распознающие и связывающие комплекс ретиноид + ретинол-связывающий белок (РСБ). В сетчатке глаза ретинол превращается в ретиналь, а в печени он подвергается биотрансформации, превращаясь сначала в активные метаболиты (в ретиналь, а затем в ретиноевую кислоту, которая выводится с желчью в виде глюкуронидов), а затем в неактивные продукты, выводимые почками и кишечником. Попав в кишечник, препарат участвует в энтерогепатической циркуляции. Элиминация осуществляется медленно: за 21 день из организма исчезает всего 34 % введённой дозы. Поэтому довольно велика опасность кумуляции препарата при повторных приёмах[4][2].

Витаминная ценность ретиноидов и каротиноидов

Поскольку только часть каротиноидов пищи могут преобразовываться в организме в витамин A, продукты питания сравнивают по количеству усвоенного организмом человека витамина A в форме ретинола. Некоторая путаница определения этого количества возникает из-за того, что представление об эквивалентном количестве с течением времени менялось.

Долго использовалась система, основанная на международных единицах (МЕ). Величина одной единицы МЕ была принята 0,3 мкг ретинола, 0,6 мкг β-каротина или 1,2 мкг других каротиноидов, являющихся провитаминами A.

Позднее стали использовать другую единицу — эквивалент ретинола (ЭР). 1 ЭР соответствовал 1 мкг ретинола, 2 мкг растворённого в жире β-каротина (из-за плохой растворимости в большинстве витаминных комплексов β-каротин растворён лишь частично), 6 мкг β-каротина в обычной пище (так как преобразование β-каротина в ретинол в этом случае ниже, чем в случае растворённого в жире β-каротина) или 12 мкг α-каротина, γ-каротина или β-криптоксантина в пище (поскольку из молекул этих каротиноидов образуется на 50 % меньше ретинола по сравнению с молекулами β-каротина)[14].

Последующие исследования показали, что в действительности витаминная активность каротиноидов в два раза ниже, по сравнению с тем, что считалось ранее. Поэтому в 2001 году Институт медицины США предложил очередную новую единицу — эквивалент активности ретинола (RAE). 1 RAE соответствует 1 мкг ретинола, 2 мкг растворённого в жире β-каротина (в виде фармацевтического препарата), 12 мкг «пищевого» β-каротина или 24 мкг иных провитаминов A[14].

Вещество RAE в 1 мкг вещества
ретинол  
бета-каротин, растворённый в жире 1/2
бета-каротин в пище 1/12
альфа-каротин в пище 1/24
гамма-каротин в пище 1/24
бета-криптоксантин в пище 1/24

Взаимодействие

Синергистом витамина A является витамин E, который способствует сохранению ретинола в активной форме, всасыванию из кишечника и его анаболическим эффектам. Витамин A нередко назначают вместе с витамином D. При лечении гемералопии его следует назначать вместе с рибофлавином, никотиновой кислотой. Нельзя одновременно с витамином A назначать холестирамин, активированный уголь, нарушающие его всасывание[4].

Транскрипция генов

Витамин A и его производные действуют на специфические рецепторные белки в клеточных ядрах: Retinoic acid receptor, beta (RARB); Retinoid-Related Orphan Receptor-gamma (RORC); Retinoid X receptor, alpha (RXRA). Кристаллические структуры таких ядерных рецепторов с ретиноивой кислотой были исследованы кристаллографическими методами — рентгено структурный анализ (РСА). Такой лиганд-рецепторный комплекс связывается с участками ДНК и вызывает супрессию генов, регулируя таким образом синтез белков, ферментов или компонентов тканей, и проявляется это действие как в эмбриогенезе, так и в морфогенезе [2][4]. Фармакологические эффекты витамина А определены именно этим свойством.

Роль

Витамин A имеет следующие фармакологические эффекты[4]:

  1. Синтез ферментов, необходимых для активирования фосфоаденозинфосфосульфата (ФАФС), необходимого для синтеза:
    • мукополисахаридов: хондроитинсерной кислоты и сульфогликанов — компонентов соединительной ткани, хрящей, костей; гиалуроновой кислоты — основного межклеточного вещества; гепарина;
    • сульфоцереброзидов;
    • таурина (входит в состав таурохолевой желчной кислоты, стимулирует синтез соматотропного гормона, участвует в синаптической передаче нервного импульса, обладает антикальциевым эффектом);
    • ферментов печени, участвующих в метаболизме эндогенных и экзогенных веществ.
  2. Синтез соматомединов A1, A2, B и C, способствующих синтезу белков мышечной ткани; включению фосфатов и тимидина в ДНК, пролина в коллаген, уридина в РНК.
  3. Гликолизирование полипептидных цепей:
    • гликопротеинов крови (а1 — макроглобулин и др.);
    • гликопротеинов, являющихся компонентами клеточных и субклеточных (митохондриальных и лизосомальных) мембран, что имеет огромное значение для завершения фагоцитоза;
    • гликопротеина — фибронектина, участвующего в межклеточном взаимодействии, за счёт чего происходит торможение роста клеток.
  4. Синтез половых гормонов, а также интерферона, иммуноглобулина A, лизоцима.
  5. Синтез ферментов эпителиальных тканей, предупреждающих преждевременную кератинацию.
  6. Активация рецепторов для кальцитриола (активного метаболита витамина D).
  7. Синтез родопсина в палочках сетчатки, необходимого для сумеречного зрения.

Соединения группы витамина A имеют различную биологическую активность. Ретинол необходим для роста, дифференциации и сохранения функций эпителиальных и костных тканей, а также для размножения. Ретиналь важен в механизме зрения. Ретиноевая кислота в 10 раз активнее ретинола в процессах клеточной дифференциации, но менее активна в процессах размножения[6]. Если крыс лишить всех остальных форм витамина A, то они могут продолжать нормально расти. Однако у таких крыс проявляется бесплодие (хотя высокие повторяющиеся дозы ретиноевой кислоты способны восстановить сперматогенез[15]) и начинает вырождаться сетчатка, так как ретиноевая кислота не может быть восстановлена до ретиналя или ретинола, в то время как ретиналь свободно переходит в ретинол и обратно[16][17].

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...