Интегральный коэффициент поглощения
⇐ ПредыдущаяСтр 2 из 2 Интегральный коэффициент поглощения определяется как полная доля излучения, поглощённого при прохождении через образец или отражении от него. При отражении сумма коэффициента поглощения и альбедо тождественно равна единице. 5 Выделим в проводящей среде небольшой параллелепипед объемом V (рис. 16.1). Рис. 16.1. Параллелепипед в проводящей среде Длина ребер параллелепипеда Δ l, площадь поперечного сечения Δ s. Расположим его так, чтобы напряженность поля была в нем направлена параллельно ребру. В силу малости объема можно считать, что напряженность поля одна и та же во всем элементарном объеме: где Ток: Напряжение на элементе объема: Сопротивление элемента объема: где γ – удельная проводимость среды. Поставив в (16.3) выражения (16.2) и (16.4) получим: Выражение (16.5) называют законом Ома в дифференциальной форме. Это уравнение справедливо для областей вне источников ЭДС. В областях, занятых источниками ЭДС, существует также так называемое стороннее электрическое поле, обеспечивающее непрерывное движение зарядов в электрической цепи. Это поле обусловлено химическими, электрохимическими, тепловыми и термоэлектрическими процессами. Закон Ома в дифференциальной форме для областей, занятых источниками ЭДС Уравнение (16.6) называется обобщенным законом Ома. Если от обеих частей взять интеграл по замкнутому контуру, то получим второй закон Кирхгофа в дифференциальной форме. Если в проводящей среде выделить некоторый объем, по которому протекает постоянный, не изменяющийся во времени ток, то можно сказать, что ток, входящий в объем, равняется току, выходящему из объема, иначе в этом объеме происходило бы накопление электрических зарядов, что опыт не подтверждает. Математически это записывают так:
Разделим правую и левую часть уравнения (16.7) на объем и возьмем предел в случае, когда объем стремится к нулю Соотношение (16.8) называется первым законом Кирхгофа в дифференциальной форме. Он гласит, что в установившемся режиме (при постоянном токе) в любой точке тока нет ни истока, ни стока линий тока проводимости 6 Абсолютно чёрное тело — физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой. Идеальной моделью абсолютно черного тела является замнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис. 12.1). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот «полностью поглощается». Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен. ___________________________________________________________________________________ Основная статья: Закон Стефана — Больцмана Общая энергия теплового излучения определяется законом Стефана — Больцмана, который гласит: Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:
где j — мощность на единицу площади излучающей поверхности, а
Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра. Для нечёрных тел можно приближённо записать: где Константу Стефана — Больцмана Закон смещения Вина Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:
Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра). Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме. ------------------------------------------------------------------------------------------------------------------------------ 8 Из экспериментальных кривых зависимости функции от длины волны λ при различных температурах (рис. 12.2) следует, что распределение энергии в спектре абсолютно черного тела является неравномерным. Все кривые имеют явно выраженный
Площадь, ограниченная кривой зависимости rλ,T от λ, и осью абсцисс, пропорциональна излучательности Re абсолютно черного тела и, следовательно, по закону Стефана — Больцмана, четвертой степени температуры 9 Пирометрия (от греч. pýr — огонь и ... метрия), группа методов измерения температуры. Илюстрация "Визуальный яркостный пирометр с исчезающей нитью" в Большой Советской Энциклопедии
ОПТИЧЕСКИЙ ПИРОМЕТР С ИСЧЕЗАЮЩЕЙ НИТЬЮ Принцип действия оптического пирометра с исчезающей нитью основан на сравнении монохроматической яркости излучения накаленного тела с монохроматической яркостью излучения нити специальной пирометрической лампы накаливания. Принципиальная схема оптического пирометра типа ОППИР-017 приведена на рис.1а. Рис.1 Оптическая система пирометра представляет собой телескоп с объективом (1) и окуляром (4). Перед окуляром помещен красный светофильтр (3). Спектральная характеристика пропускания светофильтра подбирается с учетом спектральной чувствительности глаза так, чтобы при рассматривании объекта через светофильтр наибольшая видимая яркость соответствовала бы длине волны около 0,65 мкм. В фокусе объектива находится вольфрамовая нить пирометрической лампочки (5). Нить лампочки питается от аккумулятора; ее накал можно регулировать вручную реостатом (6). В поле зрения телескопа наблюдатель видит участок излучающей поверхности накаленного тела (объекта измерения) и на этом фоне – нить лампочки (рис.1б). Если яркости нити и накаленного тела неодинаковы, нить будет видна более темной или более светлой, чем фон. Регулируя накал нити реостатом, наблюдатель добивается равенства яркостей, при этом изображение нити сольется с фоном и станет неразличимо (нить "исчезнет"). В этот момент яркостная температура нити равна яркостной температуре объекта измерения. Глаз весьма чувствителен к различению яркостей и момент "исчезновения" нити улавливается с достаточной уверенностью. Показывающий прибор (8), включенный в цепь нити накаливания, градуируется по образцовому пирометру или по температурным лампам, в °С яркостной температуры. Как указывалось выше, если объект измерения по своей излучающей способности близок к абсолютно черному телу, то показываемая пирометром яркостная температура равна истинной температуре объекта. Однако излучающая способность реальных физических тел не достигает излучающей способности абсолютно черного тела. Поэтому при одинаковой яркости излучения, т.е. при одинаковой яркостной температуре, истинная температура Т реального физического тела будет выше яркостной температуры ТS, показываемой оптическим пирометром. Соотношение истинной и яркостной температур определяется выражением
где, Т и ТS - истинная и яркостная температуры в градусах абсолютной шкалы;
с2 - 1,438 см/град. – постоянная;
Коэффициент излучательной способности Диапазон измерения температуры, ºС +1300 … +2500 Предел допускаемой основной абсолютной погреш ности,°С±(1+ 0,01· t *)
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|