Основные задачи современной цитологии
⇐ ПредыдущаяСтр 2 из 2 Основные задачи современной цитологии: a. дальнейшее изучение микроскопических и субмикроскопических структур и химической организации клеток; b. изучение функций клеточных структур и их взаимодействий; c. изучение способов проникновения веществ в клетку, выделения их из клетки и роли мембран в этих процессах; d. изучение реакций клеток на нервные и гуморальные стимулы макроорганизма и на стимулы окружающей среды; e. изучение восприятия и проведения возбуждения; f. изучение взаимодействия между клетками; g. изучение реакций клеток на повреждающие воздействия; h. изучение репараций повреждения и адаптации к факторам среды и повреждающим агентам; i. изучение репродукции клеток и клеточных структур; j. изучение преобразований клеток в процессе морфофизиологической специализации (дифференцировки); k. изучение ядерного и цитоплазматического генетического аппарата клетки, его изменений при наследственных заболеваниях; l. изучение взаимоотношений клеток с вирусами; m. изучение превращений нормальных клеток в раковые (малигнизация); n. изучение процессов поведения клеток; o. изучение происхождения и эволюции клеточной системы. Наряду с решением теоретических вопросов цитология участвует в разрешении ряда важнейших биологических, медицинских и сельскохозяйственных проблем. В зависимости от объектов и методов исследования развивается ряд разделов цитологии: · цитогенетика; · кариосистематика; · цитоэкология; · радиационная цитология; · онкологическая цитология; · иммуноцитология и т. д. Роль клетки в эволюции живого Появление первой примитивной клетки стало началом биологической эволюции жизни на планете. Что послужило причиной возникновения именно живой клетки из неживого, до сих пор неизвестно, существует несколько гипотез, однако большинство из них говорит о том, что имел место некий доклеточный предок – протобионт, из которого впоследствии сформировалась древнейшая клетка. Механизм перехода от сложных органических веществ к простым живым организмам наукой пока не установлен. Теория биохимической эволюции, предложенная ученым А.И. Опариным в 20-х гг., предлагает лишь общую схему. В соответствии с ней между первичными сгустками органических веществ (коацерватов) могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей данным сгусткам стабильность. Именно с появлением мембраны можно говорить о рождении клетки – основной структурной единицы жизни, способной к росту и размножению. Очевидно, археклетка была отграничена от внешней среды двухслойной оболочкой (мембраной), обладала способностью всасывать через нее протоны, ионы и маленькие молекулы, а ее метаболизм основывался на низкомолекулярных углеродных соединениях. Для строения археклетки характерно наличие клеточного скелета, отвечавшего за целостность клетки, а также обеспечивавшего возможность ее деления.
Первыми возникшими на Земле одноклеточными организмами были примитивные бактерии, не обладавшие ядром – прокариоты. Они жили в безкислородной среде и питались готовыми органическими соединениями – веществами, синтезированными в процессе химической эволюции. Однако по мере наполнения атмосферы земли кислородом, многим бактериям пришлось приспособиться к кислородному дыханию – фотосинтезу, что явилось поворотом в эволюции живого. Фотосинтез ускорял биологический круговорот веществ и эволюцию живого в целом. Долго длившийся процесс перехода к фотосинтезу привел примерно 2,6 млрд. лет назад к возникновению первых, имеющих ядро организмов – эукариотов. Это были более совершенные организмы, в ядре которых были сконцентрированы хромосомы с ДНК, сама клетка воспроизводилась уже без серьёзных изменений.
Последующая эволюция эукариотов связана с разделением этих организмов на животные и растительные (примерно 2,6 млрд. – 570 млн. лет назад). Растительные клетки эволюционировали в сторону развития жесткой целлюлозной оболочки клеток и активного использования фотосинтеза, животные же клетки «выбрали» увеличение способности к передвижению, а также усовершенствовали способы поглощать и выделять продукты переработки пищи. Следующими важными этапами в эволюции живого мира стало половое размножение (около 900 млн. лет назад) и появление многоклеточных организмов с телом, тканями и органами, выполняющими определённые функции (700–800 млн. лет назад). Это были губки, черви, членистоногие и т.п. К тому времени мировой океан уже заселяли водоросли. Подводя итог, можно сказать, что именно выделение живой самостоятельной клетки из окружающей среды и стало толчком к началу эволюции жизни на земле и роль клетки в развитии всего живого является главенствующей. Заключение За последние 50 лет цитология из описательной превратилась в экспериментальную науку, ставящую перед собой задачи изучения физиологии клетки, ее основных жизненных функций и свойств, ее биологии. Другими словами, современная цитология – это физиология клетки, она совместно с генетикой изучает жизнедеятельность и поведение клетки при различных обстоятельствах. Успехи современной биологии привели к революционным технологическим изменениям в медицине, сельском хозяйстве и промышленности. Научные открытия в области современной биологии настолько поразительны, что то, что казалось невозможным вчера, становится явью сегодня, например клонирование. Однако ряд неразрешённых этических вопросов, связанных с использованием эмбриональных клеток, клонированием и другими направлениями современной биологии, во многом тормозит развитие цитологии и смежных с нею наук. Несмотря на то, что многие открытия биологии уже давно используются в практической жизни, скорее всего, наиболее значимые открытия в этой сфере еще впереди, также как и уже полученные данные приобретут вид реально работающих разработок еще через годы. Молекулярная биология, включающая в себя цитологию и генетику, является на данный момент одной из самых перспективных наук, сулящей человечеству огромные возможности
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|