Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Выделенные и мультиплексируемые линии

ЭВМ и периферийные устройства

Лектор: доц. Осмоналиев А.Б.

Лекция 14. (2 часа)

Тема: Физическая реализация шин. Распределение линий шины.

Распределение линий шины. Выделенные и мультиплексируемые линии

Физическая реализация шин

Кратко остановимся на различных аспектах физической реализации шин в вычислительных машинах и системах.

 

Механические аспекты

Основная шина (рис. 14.1), объединяющая устройства вычислительной машины, обычно размещается на так называемой объединительной или материнской плате. Шину образуют тонкие параллельные медные полоски, поперек которых через небольшие интервалы установлены разъемы для подсоединения устройств ВМ. Подключаемые к шине устройства обычно также выполняются в виде печатных плат, часто называемых дочерними платами или модулями. Дочерние платы вставляются в разъемы на материнской плате. В дополнение к тонким сигнальным линиям на материнской плате имеются также и более широкие проводящие линии, по которым к дочерним платам подводится питающее напряжение. Несколько контактов разъема обычно подключаются к общей точке — «земле». «Земля» на материнской плате реализуется либо в виде медного слоя (одного из внутренних слоев многослойной печатной платы), либо как широкая медная дорожка на обратной стороне материнской платы.

Рис. 14.1. Организация объединительной шины

 

Контактные пружины в разъемах обеспечивают независимое подключение сигнальных линий, расположенных по обеим сторонам вставляемой в разъем дочерней платы. При создании соединительных разъемов прилагаются значительные усилия с тем, чтобы гарантировать надежный контакт после многократного извлечения платы из разъема, а также при длительной (многолетней) эксплуатации

разъема в загрязненной или коррозийной среде.

«Механические» спецификации шины обычно включают такие детали, как размеры плат, размеры и размещение направляющих для установки платы, разрешенное место для установки кабельного разъема, максимальная высота элементов на плате и т. д.

 

Электрические аспекты

Все устройства, использующие шину, электрически подсоединены к ее сигнальным линиям, представляющим собой электрические проводники. Меняя уровни напряжения на сигнальных линиях, ведущее устройство формирует на них информационные или управляющие сигналы. Когда ведущее устройство выставляет на сигнальной шине какой-то уровень напряжения, этот уровень может быть воспринят приемниками в любой точке линии. Такое описание дает лишь идеализированную картину происходящих на шине процессов — реальные процессы значительно, сложнее.

Схему, меняющую напряжение на сигнальной шине, обычно называют драйвером или возбудителем щины. В принципе драйвером может быть любая цифровая схема, поскольку на ее цифровом выходе всегда присутствует один из двух возможных уровней напряжения.

При реализации шины необходимо предусмотреть возможность отключения драйвера от сигнальной линии на период, когда он не использует шину. Один из возможных способов обеспечения подобного режима - применение драйвера, выход которого может находиться в одном из трех состояний: «высокий уровень напряжения» (high), «низкий уровень напряжения» (low) и «отключен» (off). Для перевода в состояние «off», эквивалентное отключению выхода драйвера от сигнальной линии, используется специальный вход драйвера. Режим «off» необходим для исключения возможности одновременного управления шиной двумя или более устройствами, в противном случае на линиях могут возникать пиковые выбросы напряжения или искаженные сигналы, которые кроме некорректной передачи информации могут привести к преждевременному отказу электронных компонентов.

Совместное использование линии шины несколькими устройствами возможно также за счет подключения этой линии к выходу драйвера через резистор, соединенный с источником питания. В зависимости от полупроводниковой технологии, примененной в выходных каскадах драйвера, подобную возможность обеспечивают схемы с открытым коллектором (ТТЛ), открытым стоком (МОП) или открытым эмиттером (ЭСЛ). Данный способ не только исключает электрические конфликты на шине, но и позволяет реализовать очень полезный вид логической операции, известный как «монтажное ИЛИ» или «монтажное И» (трактовка зависит от соответствия между уровнями напряжения и логическими значениями 1 и 0). Если к линии одновременно подключается несколько драйверов, то сигнал на линии представляет собой результат логического сложения (операция ИЛИ) всех поступивших на линию сигналов. Это оказывается весьма полезным при решении задачи арбитража, которая рассматривается позже. В некоторых шинах «монтажное ИЛИ» используется лишь в отдельных сигнальных линиях, но иногда эту операцию допускают по отношению ко всем линиям шины.

Приемниками в операциях на шинах называют схемы, сравнивающие уровень сигнала на входе со стандартными значениями, формируемыми внутренними цепями приемников. По итогам сравнения приемник генерирует выходной сигнал, уровень которого соответствует одному из двух возможных логических значений — 1 или 0. Трансивер (приемопередатчик) содержит приемник и драйвер, причем выход драйвера и вход приемника сводятся в общую точку.

Рассматривая процесс распространения сигнала по сигнальной линии, необходимо учитывать четыре основных фактора:

• скорость распространения;

• отражение;

• перекос;

• эффекты перекрестного влияния.

Теоретическая граница скорости распространения сигнала — скорость света в свободном пространстве, то есть около 300 мм/нс. Реальная скорость, определяемая физическими характеристиками сигнальных линий и нагрузкой, реально не может превысить 70% от скорости света.

Процессы в линии рассмотрим на примере сигнальной линии, которая через резистор, соединенный с источником питания, удерживается на уровне напряжения, соответствующем логической единице. Сигнал драйвера «подтягивает» линию к своему уровню напряжения. Изменение напряжения распространяется от точки подключения драйвера в обоих направлениях, пока на всей линии не установится уровень сигнала драйвера. Характер распространения сигнала определяют емкость, индуктивность и характеристическое сопротивление линии, локальные значения которых по длине линии зависят от локальных свойств проводника и его окружения.

По мере распространения по реальной линии сигнал преодолевает области с различным сопротивлением. Там, где оно меняется, сигнал не может оставаться постоянным, поскольку меняется соотношение между током и напряжением. Часть игнала продолжает продвижение, а часть — отражается в противоположную сторону. Прямой и отраженный сигналы могут повторно отражаться, в результате чего на линии формируется сложный результирующий сигнал. В конце линии сигнал отражается назад, если только он не поглощен правильно подобранным согласующим резистором. Если на конце линии имеется согласующий резистор, с сопротивлением, идентичным импедансу линии, сигнал будет поглощен без отражения. Такие резисторы должны размещаться по обоим концам сигнальной линии. К сожалению, точное значение импеданса реальной линии никогда не известно, из-за чего номиналы резисторов невозможно точно согласовать с линией, и отражение сегда имеет место.

При параллельной передаче по линиям шины битов адреса или данных сигналы на разных линиях достигают соответствующих приемников совсем не одновременно. Это явление известно как перекос сигналов. Причины возникновения и способы компенсации перекоса будут рассмотрены позже.

Распространяясь по линии, сигнал создает вокруг нее электростатическое и магнитное поля. Сигнальные линии в шине располагаются параллельно и в непосредственной близости одна от другой. Поля от близко расположенных линий перекрываются, приводя к тому, что сигнал на одной линии влияет на сигнал в другой.

Этот эффект называют перекрестной или переходной помехой.

Наиболее очевидный способ уменьшения перекрестной помехи эффекта - пространственно разнести линии шины так, чтобы их поля не влияли на «соседей» — для печатной платы ограниченного размера не подходит. К снижению эффектов перекрестного влияния ведет уменьшение взаимных емкости и индуктивности линий, чего можно добиться, разместив вблизи сигнальных линий «земляные» линии или включив в многослойную печатную плату «земляные» слои. Это, однако, приводит к нежелательному эффекту увеличения собственной емкости линий.

Наиболее распространенный подход к снижению перекрестной помехи состоит в разделении линий изолятором с малой диэлектрической постоянной. В целом, при проектировании шин обычно используется комбинация перечисленных методов борьбы с перекрестной помехой.

Из-за несовершенства физической реализации сигнальных линий фронты им­ пульсов по мере распространения сигналов меняются, соответственно, меняется и форма сигнала. Для каждой шины существует некое минимальное значение ширины импульса, при которой он еще способен дойти от одного конца к другому так, что его еще можно распознать. Эта ширина выступает в качестве основного ограничения на полосу пропускания данной шины, то есть на число импульсов, которые могут быть переданы по шине в единицу времени.

Поскольку драйвер одновременно «видит» две линии, передающие информацию в противоположных направлениях, он должен поддерживать двойную по сравнению с одной линией величину тока. Для типичных линий импеданс не превышает 20 Ом, а сигналы имеют уровень порядка 3 В, что выражается в величине тока около 150 мА. Приведенные цифры для современных драйверов не составляют проблемы, поскольку применяемые в настоящее время схемы способны приспособиться к гораздо худшим параметрам сигналов.

Порождаемый сигналом ток замыкается через «земляной» контакт драйвера. Когда одновременно активны все сигнальные линии, ток возврата через «землю» может быть весьма большим. Положение осложняет то, что ток этот не является постоянным и в моменты подключения и отключения драйвера содержит высокочастотные составляющие. Кроме того, из-за сопротивления и индуктивности «земляного» слоя печатной платы потенциалы на «земляных» выводах дочерних плат могут различаться. Это может приводить к неверной оценке сигналов приемниками, следствием чего становится некорректное срабатывание логических схем. С «земляным» шумом легче бороться на стадии проектирования шины. Прежде всего необходимо улучшать характеристики «земляных» слоев на материнской и дочерних платах. Между системами заземления материнской и дочерних плат должно быть много хорошо распределенных надежных контактов. Для высокоскоростных шин на каждые четыре сигнальных шины следует иметь отдельный «земляной» контакт. Кроме того, дочерняя плата должна быть спроектирована так, чтобы «земляной» ток от данного драйвера протекал к тому «земляному» контакту, который расположен как можно ближе к сигнальным выводам. «Земля» материнской платы обычно реализуется в виде внутреннего медного слоя в многослойной печатной плате; отверстия с зазором вокруг сигнальных выводов предотвращают короткое замыкание сигнального вывода с этим слоем. Разъем должен быть достаточно широким, чтобы на дочерней плате трансиверы можно было разместить по возможности ближе к нему, что позволяет сократить длину тех участков шины, где нарушается ее неразрывность.

В целом ряде известных шин многие из рассмотренных положений игнорируются. По практическим соображениям используются линии с высоким импедансом. Надежность работы с такими «плохими» шинами достигается за счет их замедления: затягивание перехода сигналов от одного уровня напряжения к другому приводит к уменьшению отражений. Снижается также влияние перекрестных помех.

Высокое быстродействие драйверов шины имеет и отрицательную сторону: они оказываются слишком быстрыми для управляемых ими шин, при этом сигналы на линиях сильно искажаются. Эта проблема обычно преодолевается за счет введения задержки, часто называемой временем установления сигнала (временем успокоения). Задержка выбирается так, что сигналы стабилизируются до момента их использования. Зачастую достаточно задержки, принципиально присущей используемым схемам, но иногда приходится вводить и явную задержку.

В синхронных шинах, где для синхронизации транзакций используется единая система тактовых импульсов (ТИ), такая задержка может быть добавлена весьма просто путем замедления тактирования. Так, можно разрешить всем сигналам изменяться только по одному из фронтов ТИ, что создает достаточную заминку для распространения сигналов и их стабилизации.

В асинхронных шинах проблема должна быть решена либо в самом драйвере, либо за счет введения искусственной приостановки, компенсирующей излишнее быстродействие драйвера. Еще одна возможность - замедление цепей приемника.

Чтобы сделать приемники нечувствительными к отражениям и высокочастотному шуму, в них встраивают фильтры нижних частот. В шине NITS Altair, например, используются драйверы большой мощности и маломощные приемники. По причине быстрых драйверов и неудачного дизайна монтажной шины сигналы в этой шине сильно искажаются, но маломощные приемники достаточно медлительны и позволяют нивелировать большинство из дефектов сигнала.

Применяющиеся в настоящее время драйверы и приемники на базе транзисторно-транзисторной логики (ТТЛ) уже не в полной мере отвечают растущим требованиям. В новых шинах наметилась тенденция перехода к трансиверам на снове эмиттерно-связанной логики (ЭСЛ), как, например, в шине Fastbus. Замечательно, что одновременно с уменьшением емкости линий, уровней и крутизны фронтов сигналов, подавлением шумов в приемнике, в подобных трансиверах сохраняется преемственность со старыми устройствами: они допускают использование со стороны дочерних плат источников питания и сигналов, характерных для ТТЛ-технологии.

Обычно перед установкой или извлечением дочерней платы требуется отключение источника питания машины. В мультипроцессорных системах это крайне нежелательно, поскольку временное отключение питания приводит к необходимости перезагрузки и перезапуска каждого процессора. Некоторые системы проектируются так, что допускают извлечение и установку платы в присутствии питающего напряжения. В них обеспечивается сохранение состояния остальных плат, но работа шины временно приостанавливается. Естественно, что плата, которая была удалена и заменена на другую, уже не находится в исходном состоянии и должна быть инициализирована. Чаще всего реализация подобного режима оказывается чересчур дорогостоящей.

 

Распределение линий шины

Любая транзакция на шине начинается с выставления ведущим устройством адресной информации. Адрес позволяет выбрать ведомое устройство и установить соединение между ним и ведущим. Для передачи адреса используется часть сигнальных линий шины, совокупность которых часто называют шиной адреса (ША).

На ША могут выдаваться адреса ячеек памяти, номера регистров ЦП, адреса портов ввода/вывода и т. п. Многообразие видов адресов предполагает наличие дополнительной информации, уточняющей вид, используемый в данной транзакции. Такая информация может косвенно содержаться в самом адресе, но чаще передается по специальным управляющим линиям шины.

Разнообразной может быть и структура адреса. Так, в адресе может конкретизироваться лишь определенная часть ведомого, например, старшие биты адреса могут указывать на один из модулей основной памяти, в то время как младшие биты определяют ячейку внутри этого модуля.

В некоторых шинах предусмотрены адреса специального вида, обеспечивающие одновременный выбор определенной группы ведомых либо всех ведомых сразу (broadcast). Такая возможность обычно практикуется в транзакциях записи (от ведущего к ведомым), однако существует также специальный вид транзакции чтения (одновременно от нескольких ведомых общему ведущему). Английское название такой транзакции чтения broadcall можно перевести как «широковещательный опрос». Информация, возвращаемая ведущему, представляет собой результат побитового логического сложения данных, поступивших от всех адресуемых ведомых.

Число сигнальных линий, выделенных для передачи адреса (ширина шины адреса), определяет максимально возможный размер адресного пространства. Это одна из базовых характеристик шины, поскольку от нее зависит потенциальная емкость адресуемой памяти и число обслуживаемых портов ввода/вывода.

Совокупность линий, служащих для пересылки данных между модулями системы, называют шиной данных (ШД). Важнейшие характеристики шины данных - ширина и пропускная способность.

Ширина шины данных определяется количеством битов информации, которое может быть передано по шине за одну транзакцию (цикл шины). Цикл шины следует отличать от периода тактовых импульсов — одна транзакция на шине может занимать несколько тактовых периодов. В середине 1970-х годов типовая ширина шины данных составляла 8 бит. В наше время это обычно 32,64 или 128 бит. В любом случае ширину шины данных выбирают кратной целому числу байтов, причем это число, как правило, представляет собой целую степень числа 2.

Элемент данных, задействующий всю ширину ШД, принято называть словом, хотя в архитектуре некоторых ВМ понятие «слово» трактуется по-другому, то есть слово может иметь разрядность, не совпадающую с шириной ШД.

В большинстве шин используются адреса, позволяющие указать отдельный байт слова. Это свойство оказывается полезным, когда желательно изменить в памяти лишь часть полного слова.

При передаче по ШД части слова пересылка обычно производится по тем же сигнальным линиям, что и в случае пересылки полного слова, однако в ряде шин «урезанное» слово передается по младшим линиям ШД. Последний вариант может оказаться более удобным при последующем расширении шины данных, поскольку в этом случае сохраняется преемственность со «старой» шиной.

Ширина шины данных существенно влияет на производительность ВМ. Так, если шина данных имеет ширину вдвое меньшую чем длина команды, ЦП в течение каждого цикла команды вынужден осуществлять доступ к памяти дважды.

Пропускная способность шины характеризуется количеством единиц информации (байтов), которые допускается передать по шине за единицу времени (секунду), а. определяется физическим построением шины и природой подключаемых к ней устройств. Очевидно, что чем шире шина, тем выше ее пропускная способность.

Последовательность событий, происходящих на шине данных в процессе одной транзакции, иллюстрирует рис. 14.2. Пусть устройство А на одном конце шины передает данные устройству В на другом ее конце.

 

Рис. 14.2. Временная диаграмма пересылки данных

 

Сначала устройство А выставляет данные на шину. Здесь tзд — это задержка между моментом выставления данных устройством А и моментом их появления на шине. Этот интервал времени может составлять от 1 до 4 нс. Как уже отмечалось, скорость распространения данных по шине реально не в состоянии превысить 70% от скорости света. Единственный способ уменьшения задержки распространения tрс — сокращение длины шины. Когда сигнал достигает устройства, он должен быть «захвачен». Захват данных устройством В может быть произведен только по прошествии некоторого времени стабилизации. Время стабилизации tст — это время, в течение которого данные на входе устройства В должны стабилизироваться с тем, чтобы их можно было однозначно распознать. Необходимо также упомянуть и время удержания tуд — интервал, в течение которого информация должна оставаться на шине данных после того, как они были зафиксированы устройством В.

Общее время передачи данных по шине tn определяется выражением tn = tзд + tрс + tст + tуд. Если подставить типовые значения этих параметров, получим 4 + 1, 5 + 2 + 0 = 7,5 нс, что соответствует частоте шины 109/7,5 = 133,3 МГц.

На практике передача данных осуществляется с задержкой на инициализацию транзакции (tn) Учитывая эту задержку, максимальную скорость передачи можно определить как 1/(tП + tИ).

Некоторые шины содержат дополнительные линии, используемые для обнаружения ошибок, возникших в процессе передачи. Выделение по одной дополнительной линии на каждый отдельный байт данных позволяет контролировать любой байт по паритету, причем и в случае пересылки по ШД лишь части слова. Возможен и иной вариант контроля ошибок. В этом случае упомянутые дополнительные линии используются совместно. По ним передается корректирующий код, благодаря которому ошибка может быть не только обнаружена, но и откорректирована. Такой метод удобен лишь при пересылке по шине полных слов.

Если адрес и данные в шине передаются по независимым (выделенным) сигнальным линиям, то ширина ШАи ШД обычно выбирается независимо. Наиболее частые комбинации: 16-8,16-16, 20-8, 20-16, 24-32 и 32-32. Во многих шинах адрес и данные пересылаются по одним и тем же линиям, но в разных тактах цикла шины. Этот прием называется временным мультиплексированием и нами будет рассмотрен позже. Здесь же отметим, что в случае мультиплексирования ширина ША и ширина ШД должны быть взаимоувязаны.

Применение раздельных шин адреса и данных позволяет повысить эффективность использования шины, особенно в транзакциях записи, поскольку адрес ячейки памяти и записываемые данные могут передаваться одновременно.

Помимо трактов пересылки адреса и данных, неотъемлемым атрибутом любой шины являются линии, по которым передается управляющая информации и информация о состоянии участвующих в транзакции устройств. Совокупность таких линий принято называть шиной управления (ШУ), хотя такое название представляется не совсем точным. Сигнальные линии, входящие в ШУ, можно условно разделить на несколько групп.

Первую группу образуют линии, по которым пересылаются сигналы управления транзакциями, то есть сигналы, определяющие:

• тип выполняемой транзакции (чтение или запись);

• количество байтов, передаваемых по шине данных, и, если пересылается частьслова, то какие байты;

• какой тип адреса выдан на шину адреса;

• какой протокол передачи должен быть применен.

На перечисленные цели обычно отводится от двух до восьми сигнальных линий.

Ко второй группе отнесем линии передачи информации состояния (статуса). В эту группу входят от одной до четырех линий, по которым ведомое устройство может информировать ведущего о своем состоянии или передать код возникшей ошибки.

Третья группа - линии арбитража. Вопросы арбитража рассматриваются несколько позже. Пока отметим лишь, что арбитраж необходим для выбора одного из нескольких ведущих, одновременно претендующих на доступ к шине. Число линий арбитража в разных шинах варьируется от 3 до 11.

Четвертую группу образуют линии прерывания. По этим линиям передаются запросы на обслуживание, посылаемые от ведомых устройств к ведущему. Под собственно запросы обычно отводятся одна или две линии, однако при одновременном возникновении запросов от нескольких ведомых возникает проблема арбитража, для чего могут понадобиться дополнительные линии, если только с этой целью не используются линии третьей группы.

Пятая группа - линии для организации последовательных локальных сетей. Наличие от 1 до 4 таких линий стало общепринятой практикой в современных шинах. Обусловлено это тем, что последовательная передача данных протекает значительно медленнее, чем параллельная, и сети значительно выгоднее строить, не загружая быстрые линии основных шин адреса и данных. Кроме того, шины этой группы могут быть использованы как полноценный, хотя и медленный, избыточный тракт для замены ША и ШД в случае их отказа. Иногда шины пятой группы назначаются для реализации специальных функций, таких, например, как обработка прерываний или сортировка приоритетов задач.

В некоторых ШУ имеется шестая группа сигнальных линий — от 4 до 5 линий позиционного кода, подсоединяемых к специальным выводам разъема с помощью перемычек на этих выводах можно задать уникальный позиционный код разъема на материнской плате или вставленной в этот разъем дочерней платы. Такой код может быть использован для индивидуальной инициализации каждой отдельной платы при включении или перезапуске системы.

Наконец, в каждой шине обязательно присутствуют линии, которые в нашей классификации входят в седьмую группу, которая по сути является одной из важнейших. Это группа линий тактирования и синхронизации. При проектировании шины таким линиям уделяется особое внимание. В состав группы, в зависимости от протокола шины (синхронный или асинхронный), входят от двух до шести линий.

В довершение необходимо упомянуть линии для подвода питающего напряжения и линии заземления.

Большое количество линий в шине предполагает использование разъемов со значительным числом контактов. В некоторых шинах разъемы имеют сотни контактов, где предусмотрены подключение вспомогательных шин специального назначения, свободные линии для локального обмена между дочерними платами, множественные параллельно расположенные контакты для «размножения» питания и «земли». Значительно чаще число контактов разъема ограничивают.

 

В табл. 14.1 показано возможное распределение линий 32-разрядной шины в 64-контактном разъеме.

 

Таблица 14.1. Распределение линий 32-разрядной шины в 64-контактном разъеме

 

 

Выделенные и мультиплексируемые линии

В некоторых ВМ линии адреса и данных объединены в единую мультиплексируемую шину адреса/данных. Такая шина функционирует в режиме разделения времени, поскольку цикл шины разбит на временной интервал для передачи адреса и временной интервал для передачи данных. Структура такой шины показана на рис. 14.3.

Мультиплексирование адресов и данных предполагает наличие мультиплексора на одном конце тракта пересылки информации и демультиплексора на его другом конце. Мультиплексоры и демультиплексоры играют роль коммутирующих устройств.

 

Рис. 14.3. Мультиплексирование адреса и данных

 

Мультиплексирование позволяет сократить общее число линий, но требует усложнения логики связи с шиной. Кроме того, оно ведет к потенциальному снижению производительности, поскольку исключает возможность параллельной передачи адресов и данных, что можно было бы использовать в транзакциях записи, одновременно выставляя на ША адрес, а на ШД — записываемое слово.

Примером применения мультиплексируемой шины адреса/данных может служить шина Futurebus+.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...